首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesodermal cells in the developing chick embryo limb bud appear morphologically homogeneous until stage 21. At stage 22 the prechondrogenic and premyogenic areas begin to condense, culminating in the appearance of cartilage and muscle by stage 25-26. We have examined changes in the hyaluronate-dependent pericellular matrices elaborated by mesodermal cells of the limb bud from different developmental stages and the corresponding changes in production of cell surface-associated and secreted glycosaminoglycans. When placed in culture, most early mesodermal cells (stage 17 lateral plate and stage 19 limb bud) exhibited pericellular coats as visualized by the exclusion of particles. These coats were removed by treatment of the cultures with Streptomyces hyaluronidase. Cells from stage 20-21 limb buds (precondensation) had smaller coats, whereas cells derived from stage 22, 24, and 26 limb buds (condensed chondrogenic and myogenic regions) lacked coats. However, coats were reformed during subsequent cytodifferentiation of chondrocytes; chondrocytes from stage 28 and 30 limb buds, and more mature chondrocytes from stage 38 tibiae, had pericellular coats. Thus, cytodifferentiation of cartilage is accompanied by extensive intercellular matrix accumulation in vivo and reacquisition of pericellular coats in vitro. Although their structure was still dependent on hyaluronate, chondrocyte coats were associated with increased proteoglycan content compared to the coats of early mesodermal cells. The amount of incorporation of [3H]acetate into cell surface hyaluronate remained relatively constant from stages 17 to 38, whereas in the medium compartment, incorporation into hyaluronate was more than 4-fold greater by stage 17 and 19 mesodermal cells than by cells from stages between 20 and 38. However, there was a progressive increase in incorporation into cell surface and medium chondroitin sulfate throughout these developmental stages. Thus, at the time of cellular condensation in the limb bud in vivo, we have observed a reduction in size of hyaluronate-dependent pericellular coats and a dramatic change in the relative proportion of hyaluronate and chondroitin sulfate produced by the mesodermal cells in vitro.  相似文献   

2.
An in vitro Analogue of Early Chick Limb Bud Outgrowth   总被引:2,自引:0,他引:2  
Our culture system appears to represent an in vitro analogue of early chick limb morphogenesis. Organized mesodermal cell accumulations resembling limb buds were derived from a monolayer of limb mesoderm cells when covered by limb ectoderm which included the apical ectodermal ridge (AER). The ridge retained its normal configuration when grown over a limb mesoderm monolayer and the mesoderm cells accumulated under the ridge to form a multilayered structure (10–25 cells in thickness) with the characteristic shape of a limb bud. Ectoderm which did not include the ridge failed to promote the formation of limb-like mesodermal accumulations thus the action of the ridge appears to be specific. The AER-elicited expression of mesodermal cell behaviour leading to early limb outgrowth is discussed in terms of possible morphogenetic mechanisms involved i.e. differential mitosis, cell migration, changes in cell shape and especially the adhesive properties of the cells.  相似文献   

3.
A spatiotemporal pattern of cell death occurred in the chick wing and leg bud mesoderm after removal of apical ectodermal ridge at stages 18–20. Cells died in a region extending from the limb bud distal surface to 150–200 μm into the mesoderm. Limb buds from which ridge was removed at later stages in development did not exhibit a spatiotemporal pattern of cell death. In control experiments in which dorsal ectoderm was removed, a pattern of cell death did not occur. Removal of the ridge and part of the 150- to 200-μm zone of prospective cell death resulted in cell death in an area approximately equal to the amount of the zone remaining. After removal of all of the prospective zone of cell death plus the apical ridge, cell death was observed in the remaining limb bud mesoderm. In these limb buds, cell death occurred in a region in which it had not been seen in limb bud with apical ridge alone removed. We conclude that at stages 18–20 the mesodermal cells 150–200 μm beneath the ridge require the apical ridge to survive. More proximal mesodermal cells do not die after ridge removal alone, but apparently require the presence of the more distal mesoderm to survive. Whether this is a requirement for something intrinsic to the distal mesoderm or something it possesses by way of the ridge is unknown. After stage 23, the limb mesoderm cells do not die when the apical ridge is removed. Nevertheless, at the later stages, ridge continues to be required for limb bud proximal-distal elongation and the differentiation of distal limb elements.  相似文献   

4.
5.
In a previous paper, it was shown that the limb bud mesodermal cells differentiated into cartilage even at low cell density by lowering the serum content in the culture medium (Hattori & Ide, Exp cell res 150 (1984) 338) [20]. The present paper describes the effects of cAMP on limb bud chondrogenesis at low cell density. cAMP promoted chondrogenesis at low cell density in cultures with various concentrations of serum. The limb bud cells differentiated into cartilage cells without forming aggregates. cAMP inhibited the loss of chondrogenic capability in serum-rich medium. The relationship between cAMP level and serum content is also discussed.  相似文献   

6.
When limb bud mesodermal cells of stages 23–24 chick embryos were plated at low cell density (2 × 105 cells/cm2) and cultured in medium containing 10% fetal calf serum (FCS) (serum-rich medium), all cells became fibroblastic and no chondrocyte differentiation occurred in the culture. However, when cells of the same origin were cultured in a medium containing only 0.1% FCS (serum-poor medium), almost all the cells formed aggregates which developed further to form cartilage nodules. The loss of chondrogenic activity in serum-rich medium culture was irreversible: cultivation of the limb bud cells in serum-rich medium for 12 h abolished chondrogenic activity completely and these cells could not resume activity on re-cultivation in serum-poor medium. Calf, horse and chick serum at a concentration of 10% also induced the loss of chondrogenic activity in low cell density culture. Failure of chondrogenesis in serum-rich medium culture seemed to be due to the commitment of bipotential limb bud mesodermal cells to fibroblastic cells rather than to selective detachment of pre-committed chondroblasts.  相似文献   

7.
The ability of the anterior apical ectodermal ridge to promote outgrowth in the chick wing bud when disconnected from posterior apical ridge was examined by rotating the posterior portion of the stage-19/20 to stage-21 wing bud around its anteroposterior axis. This permitted contact between the anterior and posterior mesoderm, without removing wing bud tissue. In a small but significant number of cases (10/54), anterior structures (digit 2) formed spatially isolated from posterior structures (digits 3 and 4). Thus, continuity with posterior ridge is not a prerequisite for anterior-ridge function in the wing bud. Nevertheless, posterior-ridge removal does result in anterior limb truncation. To investigate events leading to anterior truncation, we examined cell death patterns in the wing bud following posterior-ridge removal. We observed an abnormal area of necrosis along the posterior border of the wing bud at 6-12 h following posterior-ridge removal. This was followed by necrosis in the distal, anterior mesoderm at 48 h postoperatively and subsequent anterior truncation. Clearly, healthy posterior limb bud mesoderm is needed for anterior limb bud survival and development. We propose that anterior truncation is the direct result of anterior mesodermal cell death and that this may not be related to positional specification of anterior cells. In our view, cell death of anterior mesoderm, after posterior mesoderm removal, should not be used as evidence for a role in position specification by the polarizing zone during the limb bud stages of development. We suggest that the posterior mesoderm that maintains the anterior mesoderm need not be restricted to the mapped polarizing zone, but is more extensively distributed in the limb bud.  相似文献   

8.
The development of the fin and limb buds involves a balance of centrifugal (active) and centripetal (passive) mechanical forces, the first of which acts to move the walls of these structures away from each other and the second of which holds them together. When the volume of the mesodermal core increases, the generated force meets with the resistance of the basal membrane, and as a result, the limb bud has a tendency to acquire a cylindrical shape. Collagen fibers, individual mesenchymal cells, and their groups hold together the dorsal and the ventral wall of the limb bud, prevent the movement of these walls away from each other, and in this way direct bud growth along the proximodistal and the anteroposterior axes. The balance of the forces which stretch the ectodermal layer and those which constrain it has also been observed in the development of other body parts.  相似文献   

9.
Borkhvardt VG 《Ontogenez》2000,31(3):192-200
The development of the fin and limb buds involves a balance of centrifugal (active) and centripetal (passive) mechanical forces, the first of which acts to move the walls of these structures away from each other and the second holds them together. When the volume of the mesodermal core increases, the generated force meets with the resistance of the basal membrane, and as a result, the limb bud has a tendency to acquire cylindrical shape. Collagen fibers, individual mesenchymal cells, and their groups hold together the dorsal and the ventral wall of the limb bud, prevent the movement of these walls away from each other, and in this way direct bud growth along the proximodistal and the anteroposterior axes. The balance of the forces, which stretch the ectodermal layer, and those, which constrain it, have also been observed in the development of other body parts.  相似文献   

10.
The present study was carried out to try and detect the biochemical mechanism involved in the developmental arrest of the limb bud in a serpentiform Reptile. Autoradiograpy, following tritiated thymidine incorporation, in embryos of the slow-worm (Anguis fragilis, L.) reveals a strong decrease in the rate of DNA synthesis in the mesodermal cells of the limb bud, after the degeneration of the apical ectodermal ridge (AER); the curve (a function of Gompertz) visualizing this decline shows that the drop in DNA synthesis becomes accentuated just after the degeneration of the AER. This decrease precedes the reduction of the mitotic index, the cell degeneration in the mesoderm and the other regressive changes occurring in the limb bud; it thus appears as the main causative factor of the developmental arrest of the limb bud. Furthermore, these results suggest that one of the functions of the AER would be to maintain a high level of DNA synthesis in the mesoderm underlying the AER in a normal limb bud.  相似文献   

11.
12.
13.
Hyaluronan (HA) is a large glycosaminoglycan that is not only a structural component of extracellular matrices, but also interacts with cell surface receptors to promote cell proliferation, migration, and intracellular signaling. HA is a major component of the extracellular matrix of the distal subapical mesenchymal cells of the developing limb bud that are undergoing proliferation, directed migration, and patterning in response to the apical ectodermal ridge (AER), and has the functional potential to be involved in these processes. Here we show that the HA synthase Has2 is abundantly expressed by the distal subridge mesodermal cells of the chick limb bud and also by the AER itself. Has2 expression and HA production are downregulated in the proximal central core of the limb bud during the formation of the precartilage condensations of the skeletal elements, suggesting that downregulation of HA may be necessary for the close juxtaposition of cells and the resulting cell-cell interactions that trigger cartilage differentiation during condensation. Overexpression of Has2 in the mesoderm of the chick limb bud in vivo results in the formation of shortened and severely malformed limbs that lack one or more skeletal elements. Skeletal elements that do form in limbs overexpressing Has2 are reduced in length, exhibit abnormal morphology, and are positioned inappropriately. We also demonstrate that sustained HA production in micromass cultures of limb mesenchymal cells inhibits formation of precartilage condensations and subsequent chondrogenesis, indicating that downregulation of HA is indeed necessary for formation of the precartilage condensations that trigger cartilage differentiation. Taken together these results suggest involvement of HA in various aspects of limb morphogenesis.  相似文献   

14.
Migrating cells originating selectively in the ventral lateral edge of the somites adjacent to the mouse hindlimb bud have been studied in transverse sections by transmission and scanning electron microscopy. Collected during the 10th and 11th gestational days, the embryos have been classified according to the number of metameres. As soon as the 28 somite stage, discrete cytological modifications occur in a limited caudal area of the ventro-lateral somitic edge. Loosing the typical epithelial arrangement characteristic of the dermatome cells, these ventral cells show large areas of close contact between their plasma membrane and a superficial microfilamentous material accumulates in the contact areas. At the 33 somite stage, the same groups of cells elongate and form long cellular trails invading the proximal area of the limb bud mesoderm. The migrating cells become polarized along the migrating axis and they retain large and smooth intercellular contacts with each other. Very selective ultrastructural features of the migrating somitic cells can be interpreted in relation to their cinetic activity or to their early myogenic differentiation. In addition to their mutual superficial relationships, the migrating cells are characterized by the presence of numerous oriented microtubules, of a high number of active mitochondria, of an abundant granular endoplasmic reticulum and of an hypertrophied Golgi apparatus regularly located near the nucleus in the "trailing" edge of the cells. Several dense granules with a diameter of 8 nm are present in the mitochondrial matrix. The extensive Golgi apparatus is associated to numerous thick walled vesicles, which increase from 60 to 150 nm in diameter as they become closer and closer to the plasma membrane. These vesicles are absent in the mesodermal cells of somatopleural origin; their presence in the migrating somitic cells is probably related to an early myogenic differentiation. The observation made near the distal end of the somitic cellular trails suggests that the more distal somitic cells rapidly loose their ultrastructural particularities as soon as they are dispersed in the limb bud mesoderm; this aspect of the processus, however, requires the study of later developmental stages. Other observations made in the same material bring some precisions to the ecto-mesodermal relationships which are established in the apical area of the limb bud. Scanning electron microscopic observations of thick sections reveal that the outer mesodermal cells of this area send numerous filopodia which make contact with the basement membrane underlying the apical ectodermal ridge.  相似文献   

15.
We describe here how the early limb bud of the quail embryo develops in the absence of retinoids, including retinoic acid. Retinoid-deficient embryos develop to about stage 20/21, thus allowing patterns of early gene activity in the limb bud to be readily examined. Genes representing different aspects of limb polarity were analysed. Concerning the anteroposterior axis, Hoxb-8 was up-regulated and its border was shifted anteriorly whereas shh and the mesodermal expression of bmp-2 were down-regulated in the absence of retinoids. Concerning the apical ectodermal genes, fgf-4 was down-regulated whereas fgf-8 and the ectodermal domain of bmp-2 were unaffected. Genes involved in dorsoventral polarity were all disrupted. Wnt-7a, normally confined to the dorsal ectoderm, was ectopically expressed in the ventral ectoderm and the corresponding dorsal mesodermal gene Lmx-1 spread into the ventral mesoderm. En-1 was partially or completely absent from the ventral ectoderm. These dorsoventral patterns of expression resemble those seen in En-1 knockout mouse limb buds. Overall, the patterns of gene expression are also similar to the Japanese limbless mutant. These experiments demonstrate that the retinoid-deficient embryo is a valuable tool for dissecting pathways of gene activity in the limb bud and reveal for the first time a role for retinoic acid in the organisation of the dorsoventral axis.  相似文献   

16.
SF/HGF is a mediator between limb patterning and muscle development.   总被引:3,自引:0,他引:3  
Scatter factor/hepatocyte growth factor (SF/HGF) is known to be involved in the detachment of myogenic precursor cells from the lateral dermomyotomes and their subsequent migration into the newly formed limb buds. As yet, however, nothing has been known about the role of the persistent expression of SF/HGF in the limb bud mesenchyme during later stages of limb bud development. To test for a potential role of SF/HGF in early limb muscle patterning, we examined the regulation of SF/HGF expression in the limb bud as well as the influence of SF/HGF on direction control of myogenic precursor cells in limb bud mesenchyme. We demonstrate that SF/HGF expression is controlled by signals involved in limb bud patterning. In the absence of an apical ectodermal ridge (AER), no expression of SF/HGF in the limb bud is observed. However, FGF-2 application can rescue SF/HGF expression. Excision of the zone of polarizing activity (ZPA) results in ectopic and enhanced SF/HGF expression in the posterior limb bud mesenchyme. We could identify BMP-2 as a potential inhibitor of SF/HGF expression in the posterior limb bud mesenchyme. We further demonstrate that ZPA excision results in a shift of Pax-3-positive cells towards the posterior limb bud mesenchyme, indicating a role of the ZPA in positioning of the premuscle masses. Moreover, we present evidence that, in the limb bud mesenchyme, SF/HGF increases the motility of myogenic precursor cells and has a role in maintaining their undifferentiated state during migration. We present a model for a crucial role of SF/HGF during migration and early patterning of muscle precursor cells in the vertebrate limb.  相似文献   

17.
18.
Mammalians have a low potency for limb regeneration compared to that of amphibians. One explanation for the low potency is the deficiency of cells for regenerating amputated limbs in mammals. Amphibians can form a blastema with dedifferentiated cells, but mammals have few such cells. In this paper, we report limb formation, especially bone/cartilage formation in amputated limbs, because bone/cartilage formation is a basic step in limb pattern regeneration. After the amputation of limbs of a neonatal mouse, hypertrophy of the stump bone was observed at the amputation site, which was preceded by cell proliferation and cartilage formation. However, no new elements of bone/cartilage were formed. Thus, we grafted limb buds of mouse embryo into amputated limbs of neonatal mice. When the intact limb bud of a transgenic green fluorescent protein (GFP) mouse was grafted to the limb stump after amputation at the digit joint level, the grafted limb bud grew and differentiated into bone, cartilage and soft tissues, and it formed a segmented pattern that was constituted by bone and cartilage. The skeletal pattern was more complicated when limb buds at advanced stages were used. To examine if the grafted limb bud autonomously develops a limb or interacts with stump tissue to form a limb, the limb bud was dissociated into single cells and reaggregated before grafting. The reaggregated limb bud cells formed similar digit-like bone/cartilage structures. The reaggregated grafts also formed segmented cartilage. When the reaggregates of bone marrow mesenchymal cells were grafted into the stump, these cells formed cartilage, as do limb bud cells. Finally, to examine the potency of new bone formation in the stump tissue without exogenously supplied cells, we grafted gelatin gel containing BMP-7. BMP induced formation of several new bone elements, which was preceded by cartilage formation. The results suggest that the environmental tissues of the stump allow the formation of cartilage and bone at least partially, and that limb formation will be possible by supplying competent cells endogenously or exogenously in the future.  相似文献   

19.
Distal and proximal mesoderm of chick limb bud was respectively dissociated and cultured in the medium containing various concentrations of retinoic acid (RA). At low concentrations (5-50 ng/ml), RA promoted proliferation and chondrogenesis in the distal mesodermal cells. The distal cells of stage 20-24 limb buds were responsive to RA, although those of stages 25-27 were unresponsive. Both the cells of anterior and posterior regions of the distal mesoderm were responsive to RA, while the cells of proximal mesoderm were unresponsive. At higher concentrations, the growth-promoting effect of RA was reduced and chondrogenesis in the distal cells was rather inhibited. These results were discussed in relation to the role of RA as the morphogen in normal limb development and experimental duplicate formation.  相似文献   

20.
The developing limb bud provides one of the best examples in which programmed cell death exerts major morphogenetic functions. In this work, we revise the distribution and the developmental significance of cell death in the embryonic vertebrate limb and its control by the BMP signalling pathway. In addition, paying special attention to the interdigital apoptotic zones, we review current data concerning the intracellular death machinery implicated in mesodermal limb apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号