首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutants of the yeast Saccharomyces cerevisiae have been isolated which fail to derepress glutamine synthetase upon glutamine limitation. The mutations define a single nuclear gene, GLN3, which is located on chromosome 5 near HOM3 and HIS1 and is unlinked to the structural gene for glutamine synthetase, GLN1. The three gln3 mutations are recessive, and one is amber suppressible, indicating that the GLN3 product is a positive regulator of glutamine synthetase expression. Four polypeptides, in addition to the glutamine synthetase subunit are synthesized at elevated rates when GLN3+ cultures are shifted from glutamine to glutamate media as determined by pulse-labeling and one- and two-dimensional gel electrophoresis. The response of all four proteins is blocked by gln3 mutations. In addition, the elevated NAD-dependent glutamate dehydrogenase activity normally found in glutamate-grown cells is not found in gln3 mutants. Glutamine limitation of gln1 structural mutants has the opposite effect, causing elevated levels of NAD-dependent glutamate dehydrogenase even in the presence of ammonia. We suggest that there is a regulatory circuit that responds to glutamine availability through the GLN3 product.  相似文献   

2.
Mutations in the GLN3 gene prevented a normal increase in the NAD-glutamate dehydrogenase and glutamine synthetase levels in glutamate-grown Saccharomyces cerevisiae cells, whereas mutations in the URE2 gene resulted in high levels of these enzymes in glumate- and glutamine-grown cells. A ure2 gln3 double mutant had low levels of glutamate dehydrogenase and glutamine synthetase in cells grown on glutamate and glutamine; thus, gln3 mutations were epistatic to the ure2 mutations. The results suggest that the GLN3 product is capable of promoting increases in enzyme levels in the absence of a functional URE2 product and that the URE2 product antagonizes the GLN3 product. The URE2 and GLN3 genes were also found to regulate the level of arginase activity. This regulation is completely independent of the regulation of arginase by substrate induction. The activities of glutamate dehydrogenase, glutamine synthetase, and arginase were higher in cells grown on glutamate as the nitrogen source than they were in cells grown under a nitrogen-limiting condition. It had previously been shown that the levels of these enzymes can be increased by glutamine deprivation. We propose that the URE2-GLN3 system regulates enzyme synthesis, in response to glutamine and glutamate, to adjust the intracellular concentration of ammonia so as to maintain glutamine at the level required for optimal growth.  相似文献   

3.
4.
Saccharomyces cerevisiae glutaminyl-tRNA synthetase mutants were isolated through systematic screening of tight Gln- derivatives of a leaky glutamine auxotroph. These mutations define a single nuclear gene, GLN4. The gln4-1 mutation is specific for Gln-tRNA synthetase and shows a dosage effect in heterozygous diploids. The wild-type Gln-tRNA synthetase exhibits a Km for glutamine of 25 microM; the gln4-1 mutation increases this value 20-fold. These observations strongly suggest that GLN4 encodes the Gln-tRNA synthetase.  相似文献   

5.
Glutamine synthetase (EC 6.3.1.2) is a key enzyme of ammonium assimilation and recycling in plants where it catalyses the synthesis of glutamine from ammonium and glutamate. In Arabidopsis, five GLN1 genes encode GS1 isoforms. GLN1;2 is the most highly expressed in leaves and is over-expressed in roots by ammonium supply and in rosettes by ample nitrate supply compared with limiting nitrate supply. It is shown here that the GLN1;2 promoter is mainly active in the minor veins of leaves and flowers and, to a lower extent, in the parenchyma of mature leaves. Cytoimmunochemistry reveals that the GLN1;2 protein is present in the companion cells. The role of GLN1;2 was determined by examining the physiology of gln1;2 knockout mutants. Mutants displayed lower glutamine synthetase activity, higher ammonium concentration, and reduced rosette biomass compared with the wild type (WT) under ample nitrate supply only. No difference between mutant and WT can be detected under limiting nitrate conditions. Despite total amino acid concentration was increased in the old leaves of mutants at high nitrate, no significant difference in nitrogen remobilization can be detected using (15)N tracing. Growing plants in vitro with ammonium or nitrate as the sole nitrogen source allowed us to confirm that GLN1;2 is induced by ammonium in roots and to observe that gln1;2 mutants displayed, under such conditions, longer root hair and smaller rosette phenotypes in ammonium. Altogether the results suggest that GLN1;2 is essential for nitrogen assimilation under ample nitrate supply and for ammonium detoxification.  相似文献   

6.
Mutants of Escherichia coli K12 requiring glutamine as a nitrogen source were isolated, and characterized as lacking glutamine synthetase activity. Temperature sensitive revertants of one of the mutants had a heat labile glutamine synthetase, while temperature insensitive revertants had a glutamine synthetase which was thermostable in vitro, indicating that the mutation was in the structural gene for the enzyme. All of the mutations mapped in the same region of the chromosome suggesting that they might all be in the same gene. The glutamine synthetase gene (gln) was located on the E. coli chromosome by conjugation and P1-mediated transduction at minute 77. The gln gene cotransduced with the genes for oleate degradation (old), and the genes for L-rhamnose utilization (rha). The most probable gene order is old-gln-rha.  相似文献   

7.
8.
9.
Production of glutamine synthetase in Saccharomyces cerevisiae is controlled by three regulatory systems. One system responds to glutamine levels and depends on the positively acting GLN3 product. This system mediates derepression of glutamine synthetase in response to pyrimidine limitation as well, but genetic evidence argues that this is an indirect effect of depletion of the glutamine pool. The second system is general amino acid control, which couples derepression of a variety of biosynthetic enzymes to starvation for many single amino acids. This system operates through the positive regulatory element GCN4. Expression of histidinol dehydrogenase, which is under general control, is not stimulated by glutamine limitation. A third system responds to purine limitation. No specific regulatory element has been identified, but depression of glutamine synthetase is observed during purine starvation in gln3 gcn4 double mutants. This demonstrates that a separate purine regulatory element must exist. Pulse-labeling and immunoprecipitation experiments indicate that all three systems control glutamine synthetase at the level of subunit synthesis.  相似文献   

10.
The function of GLN3, a GATA factor encoding gene, in nitrogen metabolism of Candida albicans was examined. GLN3 null mutants had reduced growth rates on multiple nitrogen sources. More severe growth defects were observed in mutants lacking both GLN3 and GAT1, a second GATA factor gene. GLN3 was an activator of two genes involved in ammonium assimilation, GDH3, encoding NADP-dependent glutamate dehydrogenase, and MEP2, which encodes an ammonium permease. GAT1 contributed to MEP2 expression, but not that of GDH3. A putative general amino acid permease gene, GAP2, was also activated by both GLN3 and GAT1, but activation by GLN3 was nitrogen source dependent. GLN3 was constitutively expressed, but GAT1 expression varied with nitrogen source and was reduced 2- to 3-fold in gln3 mutants. Both gln3 and gat1 mutants exhibited reduced sensitivity to rapamycin, suggesting they function downstream of TOR kinase. Hyphae formation by gln3 and gat1 mutants differed in relation to nitrogen source. The gln3 mutants formed hyphae on several nitrogen sources, but not ammonium or urea, suggesting a defect in ammonium assimilation. Virulence of gln3 mutants was reduced in a murine model of disseminated disease. We conclude that GLN3 has a broad role in nitrogen metabolism, partially overlapping, but distinct from that of GAT1, and that its function is important for the ability of C. albicans to survive within the host environment.  相似文献   

11.
The function of GLN3, a GATA factor encoding gene, in nitrogen metabolism of Candida albicans was examined. GLN3 null mutants had reduced growth rates on multiple nitrogen sources. More severe growth defects were observed in mutants lacking both GLN3 and GAT1, a second GATA factor gene. GLN3 was an activator of two genes involved in ammonium assimilation, GDH3, encoding NADP-dependent glutamate dehydrogenase, and MEP2, which encodes an ammonium permease. GAT1 contributed to MEP2 expression, but not that of GDH3. A putative general amino acid permease gene, GAP2, was also activated by both GLN3 and GAT1, but activation by GLN3 was nitrogen source dependent. GLN3 was constitutively expressed, but GAT1 expression varied with nitrogen source and was reduced 2- to 3-fold in gln3 mutants. Both gln3 and gat1 mutants exhibited reduced sensitivity to rapamycin, suggesting they function downstream of TOR kinase. Hyphae formation by gln3 and gat1 mutants differed in relation to nitrogen source. The gln3 mutants formed hyphae on several nitrogen sources, but not ammonium or urea, suggesting a defect in ammonium assimilation. Virulence of gln3 mutants was reduced in a murine model of disseminated disease. We conclude that GLN3 has a broad role in nitrogen metabolism, partially overlapping, but distinct from that of GAT1, and that its function is important for the ability of C. albicans to survive within the host environment.  相似文献   

12.
Carbamylphosphate synthetase was purified to homogeneity from a derepressed strain of Salmonella typhimurium by a procedure based on affinity chromatography employing immobilized glutamine. The enzyme catalyzes the synthesis of carbamylphosphate from either ammonia or glutamine together with ATP and bicarbonate. The ATP saturation curve of either nitrogen donor is sigmoidal (n equals 1.5) but the affinity for ATP is higher with ammonia. In addition to the feedback inhibition by UMP and activation by ornithine which we previously reported (1), the activity was found to be stimulated by IMP and phosphoribosyl-1-pyrophosphate. Evidence from pool measurements in enteric bacteria by others suggests that of the latter two compounds only phosphoribosyl-1-pyrophosphate is physiologically significant. All effectors regulate enzyme activity by altering its affinity for ATP. Glutamine also modulates the affinity for ATP; it is increased as glutamine concentratiions decrease, an effect that could serve to insulate the cell against major changes in carbamylphosphate synthesis in response to fluctuations in concentration of glutamine. The molecular weight of the holoenzyme was estimated to be 150,000 by sucrose density gradient centrifugation in triethanolamine and Tris-acetate buffers in which the enzyme is a monomer. In the presence of ornithine in potassium phosphate buffer, the enzyme is an oligomer with a molecular weight of 580,000. This transition has been exploited as an alternate route of purifying the enzyme to homogeneity using successive sucrose density centrifugation. Polyacrylamide gel electrophoresis of the enzyme in the presence of sodium dodecyl sulfate shows that the enzyme consists of two unequal subunits with molecular weights of 110,000 and 45,000. The two subunits were separated by gel filtration in the presence of 1 M potassium thiocyanate, ATP, MgCl2, glutamine, NH4Cl, ornithine, and UMP. The heavy subunit catalyzes the synthesis of carbamylphosphate from ammonia but not glutamine. The ATP saturation curve for the separated heavy subunit is still sigmoidal (n equals 1.4 and So.5 equals 0.3 mM). The ammonia dependent activity of the heavy subunit is stimulated by the activators ornithine, IMP, and phosphoribosyl-1-pyrophosphate but is only marginally inhibited by high concentrations of UMP. The addition of the light subunit restored full ability to utilize glutamine as well as normal sensitivity to UMP. Purified subunits were used for in vitro complementation studies with strains carrying mutations in pyrA, the structural gene encoding carbamylphosphate synthetase. The results indicate that the pyrA region encodes both subunits and that the structural genes for the two polypeptides are linked. A deletion mutant lacking both subunits of carbamylphosphate synthetase also lacked any ability to synthetize carbamylphosphate from ammonia. Hence, unlike certain other bacteria, S. typhimurium does not possess a carbamate kinase.  相似文献   

13.
14.
15.
Glutamine auxotrophic (Gln -) and l-methionine d,l-sulfoximine (MSX) resistant (MSX r) mutants of N. muscorum were isolated and characterized for nitrogen nutrition, nitrogenase activity, glutamine synthetase (GS) activity and glutamine amide, -keto-glutarate amido transferase (GOGAT) activity. The glutamine auxotroph was found to the GOGAT-containing GS-defective, incapable of growth with N2 or NH 4 + but capable of growth with glutamine as nitrogen source, thus, suggesting GS to be the primary enzyme of both ammonia assimilation and glutamine formation in the cyanobacterium. The results of transformation and reversion studies suggests that glutamine auxotrophy is the result of a mutation in the gln A gene and that gln A gene can be transferred from one strain to another by transformation.  相似文献   

16.
17.
Mutations at two sites of the Klebsiella aerogenes chromosome, unlinked by transduction with phages PW52 and P1, result in the lack of enzymatically active glutamine synthetase. A mutation in the glnB site leads to a marked decrease in the formation of an apparently normal enzyme. Some of the mutations in the glnA site lead to the production of enzymatically inactive material capable of reacting with anti-glutamine synthetase serum. The revertant of a glnA mutant was found to produce a glutamine synthetase with less activity and less stability to heat than the enzyme of the wild type. These results locate the structural gene to the production of enzymatically inactive glutamine synthetase antigen, not subject to repression by exogenously added ammonia. This observation suggests that glutamine synthetase is itself involved in the regulation of the synthesis of glutamine synthetase.  相似文献   

18.
A González  G Dávila  E Calva 《Gene》1985,36(1-2):123-129
Glutamine (gln) requiring mutants of Saccharomyces cerevisiae have been isolated. They synthesize small amounts of glutamine synthetase (GS), which is more thermolabile than the enzyme from the parental strain. The gln auxotrophy was complemented in transformation experiments using an S. cerevisiae gene library constructed in the plasmid vector YEp13. The transformants were mitotically unstable and synthesized almost tenfold higher amounts of GS than wild-type cells. This activity was as thermoresistant as that from the wild-type strain. A recombinant plasmid was isolated from one of the transformants and partially mapped. Upon reintroduction into the auxotrophic strain, the transformation frequency to gln prototrophy was the same as that for the marker LEU2 gene. The evidence presented suggests that we have cloned the structural gene for GS from S. cerevisiae.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号