首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of cytochalasin B on the development and morphology of the Micrasterias cell vary according to different developmental stages. CB (especially 5–6 μm/ml) does not stop the growth of a developing semicell during early developmental stages and allows the formation of a three–lobed form, which is a kind of a basic form preceding the actual morphogenesis, further growth and development still being totally prevented by the same concentration. This is due to the occurrence of two separate cytoplasmic streaming systems in the developing semicell, one being cortical, more CB sensitive, the other being more central, not as sensitive to CB, both being microfilament based. The cortical streaming system supports tip growth, and many observations indicate that this system is also associated with the intermediation of the nuclear control regulating morphogenesis in Micrasterias. The effects of CB are specific: it has not been found to have distinct effects on the ultrastructure of the cell, on cell wall material production, or on the turgor pressure of the cell.  相似文献   

2.
Ursula Meindl 《Protoplasma》1985,129(1):74-87
Summary Cell development and ultrastructure are studied in the defect mutant cellMicrasterias thomasiana f. uniradiata which lacks cell pattern at one side of the cell.The ultrastructural studies reveal an uneven distribution of vesicles, preponderating at the normally growing side of the cell, as well as the presence of a special kind of dark vesicles.By means of turgor reduction and treatment with chlorotetracycline and cycloheximide some processes involved in cell shape formation are pointed out and are compared with those already described for biradiateMicrasterias cells.It is demonstrated that the asymmetric cell shape of the mutant cell is already determined at the early stage of bulb formation and is due to a unilateral growth during the later stages of development. The asymmetric arrangement of the growth areas during cell development of the mutant is expressed by an asymmetric distribution of primary wall accumulations induced by turgor reduction as well as by the presence of fluorescence zones after treatment with the Ca2+ -chelate probe chlorotetracycline at only one side of the cell. Inhibition of protein synthesis by cycloheximide during cell growth of the mutant leads to the formation of a characteristically reduced cell pattern (anuclear type of development) similar to that ofMicrasterias denticulata andMicrasterias thomasiana under the same conditions. Nevertheless, this cell pattern develops at only one side of the cell, indicating that the mutant does not have any information for cell pattern formation at the defective side.  相似文献   

3.
Formation of secretory vesicles in the noncellular secretory cavity of glandular trichomes of Cannabis saliva L. was examined by transmission electron microscopy. Two patterns of vesicle formation occurred during gland morphogenesis. 1) During initial phases of cavity formation small hyaline areas arose in the wall near the plasma membrane of the disc cell. Hyaline areas of elongated shape and different sizes were distributed throughout the wall and adjacent to the secretory cavity. Hyaline areas increased in size, some possibly fusing with others. These hyaline areas, possessing a membrane, moved into the cavity where they formed vesicles. As membraned vesicles they developed a more or less round shape and their contents became electron-dense. 2) During development of the secretory cavity and when abundant secretions were present in the disc cells, these secretions passed through the wall to accumulate as membraned vesicles of different sizes in the cavity. As secretions emerged from the wall, a membrane of wall origin delimited the secretory material from cavity contents. Vesicles released from the wall migrated in the secretory cavity and contacted the sheath where their contents permeated into the subcuticular wall as large or diffused quantities of secretions. In the subcuticular wall these secretions migrated to the wall–cuticle interface where they contributed to structural thickening of the cuticle. This study demonstrates that the secretory process in glands of Cannabis involves not only secretion of materials from the disc cell, but that the disc cell somehow packages these secretions into membraned vesicles outside the cell wall prior to deposition into the secretory cavity for subsequent structural development of the sheath.  相似文献   

4.
A method was developed which allowed the ultrastructural study of septal formation in the basidiomycete Polyporus biennis. The method involved fixing and embedding single clamp connections. Clamp connections with septa at desired developmental stages were located by light microscopy. The septum grew by the incorporation of vesicles of wall material precursors. The rim of the developing septum was drawn centripetally inwards by a contracting collar of microfilaments within a darkly staining matrix. The inflation of the central pore swelling was governed by realigned microfilaments. The parenthesomes were formed, starting at the apex, by the utilization of the microfilament/matrix material lying along the septum. On completion of the parenthesomes a transient striated structure, governed by microfilaments, was formed in the pore channel and the areas enclosed by the parenthesomes. The maturation of the septum involved the laying down of ER along the septum and the occlusion of each end of the pore channel.  相似文献   

5.
Summary The effects of the elimination of the nuclear control on the ultrastructure of the green algaMicrasterias torreyi. Bail, have been studied by using centrifugation for denucleation and lethal dose of UV-light. Centrifugated anucleate cells were fixed 7 and 26 hours after the treatment and the UV-treated cells 4 and 8 hours after the irradiation. Although both treatments eliminate the nuclear control and the treated cells resemble morphologically each other, yet there are differences in ultrastructure suggesting that they are also brought about by other factors than the presence of nucleus. Both the treatments cause accumulation of cell wall material in the tips of lobes. The cell wall shows unusual secondary thickening with electron dense spots embedded in the matrix. The denucleation retards the functional cycle of Golgi apparatus and the production of vesicles has stopped in the 26-hour-denucleated cells. It is possible that flat vesicle production is totally absent in denucleated cells.First the UV-treatment seems to activate the function of Golgi apparatus but later on the vesicle production almost stops. It seems to eliminate the production of large vesicles but not that of dark vesicles.Both the treatments cause deterioration of ER membranes and polysomes, and in consequence, probably inhibit protein synthesis.Unlike UV-irradiation, denucleation appears to destroy the microtubule system. Mitochondrial cristae have almost entirely vanished within 26 hours after denucleation. Effect of denucleation and UV-irradiation on the subcellular morphology inMicrasterias.  相似文献   

6.
植物叶片原生质体分离的可能机制   总被引:1,自引:1,他引:0  
分析了植物叶片在分离液环境中形成原生质体的过程,文中提出,分离液配方中的酸性物质使植物叶片处于酸性环境中并导致植物正常细胞首先发生细胞壁酸性降解,随后出现原生质体脱离细胞壁进入分离液,继而又进一步发生质膜的酸性降解,使细胞核和细胞器进入分离液中,最终分离液中的细胞器以细胞核为中心进行细胞器重组,最后产生外貌形态一致的新的原生质体。植物细胞壁和质膜是植物细胞的包被系统。植物细胞包被系统的酸性降解使植物细胞器重组并产生新的原生质体成为可能。  相似文献   

7.
《Fungal biology》2020,124(2):135-143
Lentinula edodes is a widely-produced mushroom in China that forms a brown film via pigment accumulation on mature mycelial surfaces to ensure high-quantity and high-quality fruiting body formation. Here, ultraviolet–visible, infrared spectra, and elemental analyses predicted that the pigment in the brown film was melanin. Electron microscopy revealed the size, morphological characteristics, accumulation, and morphogenesis of electron-dense material, which were similar to those of melanin, as well as subcellular structural changes during brown film formation. The electron-dense material appeared as granules, vesicles, and polymers. The accumulation of electron-dense materials on the cell wall was followed plasmolysis, plasma membrane disruption, electron-dense material accumulation in the interstitial space, and gradual accumulation on the outer cell wall. Dolipore septa degradation and morphogenetic cell death occurred during browning. In the final stage of browning, the dolipore septum disappeared and the cell was nearly empty. This study provides a cytological foundation for evaluating the regulation of brown film formation in L. edodes.  相似文献   

8.
The functions of the actin-myosin–based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells.  相似文献   

9.
Two different, independent, and alternative modes of mucilage excretion were found in the unicellular green alga Micrasterias denticulata Bréb. under constant culture conditions. The cells were capable of either excreting mucilage over all their cell surface or they extruded mucilage from one of their polar ends, which enabled directed movement such as photoorientation or escape from unfavorable environmental conditions. By means of a polyclonal antibody raised against Micrasterias mucilage, the secretory pathway of Golgi derived mucilage vesicles from their origin to their discharge was analyzed by means of conventional and energy filtering TEM. Depending on the stage of the cell cycle, mucilage vesicles were subjected to maturation processes. This may occur either after they have been pinched off from the dictyosomes (e.g. during cell growth) or when still connected to trans‐Golgi cisternae, as in the case of interphase cells. Only fully grown mature vesicles contained mucilage in its final composition as indicated by antibody labeling. After fusion of mucilage vesicles with vacuoles, no immunolabeling was found in vacuoles, indicating that the vesicle content was digested. Mucilage vesicles fused with the plasma membrane in areas of cell wall pores but were also able to excrete mucilage at any site directly through the respective cell wall layer. This result disproves earlier assumptions that the pore apparatus in desmids are the only mucilage excreting areas at the cell surface. Both mechanisms, excretion through the pores and through the cell wall, lead to formation of mucilage envelopes covering the entire cell surface.  相似文献   

10.
Fine Structure of Bacillus megaterium During Synchronous Growth   总被引:27,自引:16,他引:11       下载免费PDF全文
A fine-structure study of synchronously dividing Bacillus megaterium revealed the sequence of events involved in the division of the cell. First, a mesosome develops as a concentric fold of the plasma membrane at the site of septum formation. The mesosome contains membrane-bound vesicular structures, 300 to 500 A in diameter, plus a large membrane-bound structure, 2,000 A in diameter. These larger vesicles are peculiar to mesosomes in this stage of division and are not observed in the mesosomes involved in spore septum formation. The transverse septum originates within the mesosome and remains enclosed during its subsequent growth across the cell. An intimate association is observed between mesosome vesicles, mesosome membrane, and the growing edge of the transverse septum. Prior to completion of the septum, the membranes bounding the mesosome fuse, and further wall thickening occurs within the structure formed by this fusion. At this time, the septum only equals the parent cell wall in thickness. The doubling in thickness of the septum, which is required for the production of two normal daughter cell walls, occurs during a second phase of wall thickening, which is characterized by the appearance of a constriction at the base of the septum. As the constriction widens, the wall in this region thickens, forming the typical rounded poles of the daughter cells. Capsular synthesis at the poles occurs during this second phase of wall thickening. Throughout the division process, the nuclear material appears to be associated at one end with a mesosome at or near the pole of the cell and at the other end to the mesosome involved in septum formation. This association frequently takes the form of a stalklike extension of the mesosome penetrating into the chromatin fibrils.  相似文献   

11.
Bacterial rod morphogenesis was studied in synchronously growing cells of Escherichia coli C600 during the reshaping process that follows the removal of mecillinam, a β-lactam antibiotic that specifically inhibits lateral wall formation of gram-negative rods and causes transition to coccal shape. Removal of mecillinam after 30 min of action did not affect the timing of subsequent cell division, but removal after 50 min delayed resumption of cell division for approximately one generation time. In order to study the interplay between lateral wall elongation and septum formation in determining and maintaining the bacterial rod shape, we evaluated the effect of re-adding mecillinam or of adding aztreonam (a specific inhibitor of septum formation) at various stages of the reshaping process. We conclude that mecillinam was active only during the reshaping process, while aztreonam was active only later when the cells were close to dividing again. These results provide further evidence for our previous proposal according to which elongation and septation are two alternating and competing events of the cell cycle and are linked to each other to force bacterial rods to grow to a given length. Received: 23 January 1997 / Accepted: 2 May 1997  相似文献   

12.
Kinesin is a force-generating molecule that is thought to translocate organelles along microtubules, but its precise cellular function is still unclear. To determine the role of kinesin in vivo, we have generated a kinesin-deficient strain in the simple cell system Neurospora crassa. Null cells exhibit severe alterations in cell morphogenesis, notably hyphal extension, morphology and branching. Surprisingly, the movement of organelles visualized by video microscopy is hardly affected, but apical hyphae fail to establish a Spitzenkörper, an assemblage of secretory vesicles intimately linked to cell elongation and morphogenesis in Neurospora and other filamentous fungi. As cell morphogenesis depends on polarized secretion, our findings demonstrate that a step in the secretory pathway leading to cell shape determination and cell elongation cannot tolerate a loss of kinesin function. The defect is suggested to affect the transport of small, secretory vesicles to the site involved in protrusive activity, resulting in the uncoordinated insertion of new cell wall material over much of the cell surface. These observations have implications for the presumptive function of kinesin in more complex cell systems.  相似文献   

13.
J. Cronshaw 《Planta》1966,72(1):78-90
Summary Sterile pith cultures of Nicotiana tabacum have been induced to form localized regions of differentiating tracheids. These localized regions have been examined by phase, fluorescence, and electron microscopy, and polarization optics. Fixation for electron microscopy was with glutaraldehyde-osmium. The differentiating tracheids develop characteristic thick cell walls which are eventually lignified. The lignifications appear to be uniform throughout the secondary wall and little or no lignin appears to be deposited in the primary walls or intercellular layer. At all stages of secondary wall deposition, the peripheral cytoplasm contains a system of microtubules which form a pattern similar to that of the developing thickenings. Within this system the microtubules are oriented, the direction of orientation mirroring that of the fibrils in the most recently deposited parts of the wall. The observations support the view that the microtubules are somehow involved in microfibril orientation. The microtubules appear to be attached to the plasma membrane which has a triple layered structure. The two electron dense layers of the plasma membrane have a particulate structure. In the differentiating tracheids at regions where secondary wall thickening has not yet been deposited numerous invaginations of the plasma membrane are observed which contain loosely organized fibrillar material. It is suggested that these are areas of localized activity of the plasma membrane and that the enzymes concerned with the final organization of the cellulose microfibrils are situated at the surface of the plasma membrane. Dictyosomes in the differentiation cells give rise to vesicles which contain fibrous material and the contents are incorporated into the cell wall. Numerous profiles characteristic of plasmodesmata are evident in sections of the secondary thickenings.Part of this work was carried out at the Osborne Memorial Laboratories, Yale University.  相似文献   

14.
A number of temperature-sensitive cdc- mutants ofSchizosaccharomyces pombe that are affected in septum formation were analyzed with respect to their ultrastructure and the composition of their cell wall polymers. One mutant strain, cdc 16–116, has a cell wall composition similar to the wild type (strain 972 h-). However two other mutants, cdc 4 and cdc 7, show a higher galactomannan content and a lower -glucan content. In all the mutants tested, total glucose incorporation, protein, RNA and DNA synthesis increased similarly to wild type over 3 1/2 h. After 2–3 h of incubation at the non permissive temperature-35°C-, cell numbers remained constant although, increases in optical densities at 600 nm were observed. According to scanning electron microscopy, the mutants had aberrant shapes after 5h of incubation at 35°C. Transmission electron microscopy showed that cdc 3 is unable to complete septum formation. cdc 4 showed the most varied morphological shapes and aberrant depositions of cell wall material. cdc 8 exhibited a deranged plasma membrane and cell wall regions near of cell poles; an abnormal septum and several nuclei. cdc 7 showed elongated cells with several nuclei and with an apparently normal cell wall completely lacking in septum and septal material. cdc 16 showed more than one septum per cell.  相似文献   

15.
The disc cell wall facing the secretory cavity in lipophilic glands of Cannabis was studied for origin and distribution of hyaline areas, secretory vesicles, fibrillar matrix and particulate material. Secretions evident as light areas in the disc cell cytoplasm pass through modified regions in the plasma membrane and appear as hyaline areas in the cell wall. Hyaline areas, surrounded with a filamentous outline, accumulate near the wall surface facing the secretory cavity where they fuse to form enlarged hyaline areas. Fibrillar matrix is related to and may originate from the dense outer layer of the plasma membrane. This matrix becomes distributed throughout the wall material and contributes in part to the composition of the surface feature of secretory vesicles. Thickening of the cell wall is associated with secretions from the disc cells that facilitates movement of hyaline areas, fibrillar matrix and other possible secretions through the wall to form secretory vesicles and intervesicular materials in the secretory cavity. The outer wall of disc cells in aggregate forms the basilar wall surface of the secretory cavity which facilitates the organization of secretory vesicles that fill the secretory cavity.  相似文献   

16.
PIT CONNECTION FORMATION IN THE RED ALGA PSEUDOGLOIOPHLOEA   总被引:1,自引:0,他引:1  
Pit connection formation in the marine red alga Pseudogloiophloea confusa was studied with the electron microscope. The process of formation occurs in 2 stages. First, a septum forms as an annular ingrowth from the lateral walls. Lomasomes are associated with the centripetal accretion of wall material. The completed septum contains a large rimmed aperture, bounded by the continuous plasmalemma, and through which the cytoplasm is continuous from cell to cell. In the second stage, a highly structured plug is formed which completely blocks the aperture. The plug is condensed on flattened vesicles which lie parallel to one another and which traverse the aperture. The mature plug is composed of granules 50–100 A in diameter and surrounded by several dense layers which appear to enclose an 80 A limiting membrane. Once the pit connection is formed, no material is seen to traverse it.  相似文献   

17.
The ontogeny of spores of the liverwort Riccardia pinguis was studied at the light and electron microscope levels. Three stages of development were arbitrarily defined: spore mother cell (SMC); early tetrad with nonpigmented and unsculptured walls; and mature tetrad with pigmented and sculptured spore walls. The SMC is quadrilobed with a two-layered SMC wall, containing a central nucleus, many chloroplasts, spherosomes, and other organelles. During and following meiosis cell plates form from coalescing Golgi vesicles. These plates by continued coalescence eventually form a septum, completing the tetrad. This septum comprises middle lamella and primexine; within the latter the exine forms. By continued addition of vesicle contents to the septum and dorsal surfaces of the tetrad, the exine (sexine and nexine) and intine layers of the spore wall are laid down. The contents of the vesicles change successively during wall formation, corresponding to the different wall layers being formed. It is concluded that wall formation is under the exclusive control of the spore protoplast, and that the pattern of the mature exine is determined by the primexine. Rearrangement of organelles and other cellular components during sporogenesis is described.  相似文献   

18.
Summary Mesophyll cells (MCs) ofAdiantum capillus veneris are elongated and highly asymmetric, bearing several lateral branches and forming a meshwork resembling aerenchyma. Young MCs are polyhedral and display oppositely arranged walls and transverse cortical microtubules (Mts). Their morphogenesis is accomplished in three stages. At first they become cylindrical. Intercellular space (IS) canals, containing PAS-positive material, open through their junctions and expand laterally. During the second stage the cortical Mts form a reticulum of bundles, externally of which an identical reticulum of wall thickenings, containing bundles of parallel cellulose microfibrils, emerges. MCs do not grow in girth in the regions of wall thickenings, where constrictions form and new ISs open. Thus, MCs obtain a multi-lobed form. At the third morphogenetic stage MCs display a multi-axial growth. During this process, additional Mt rings are assembled at the base of cell lobes accompanied by similarly organized wall thickenings-cellulose microfibrils. Consequently, cell lobes elongate to form lateral branches, where MCs attach one another, while the IS labyrinth broadens considerably. Colchicine treatment, destroying Mts, inhibits MC morphogenesis and the concomitant IS expansion, but does not affect IS canal formation. These observations show that: (a) MC morphogenesis inA. capillus veneris is an impressive phenomenon accurately controlled by highly organized cortical Mt systems. (b) The disposition of Mt bundles between neighbouring MCs is highly coordinated, (c) The perinuclear cytoplasm does not appear to be involved in cortical Mt formation. Cortical sites seem to participate in Mt bundling, (d) Although extensive IS canals open before Mt bundling, the Mtdependent MC morphogenesis contributes in IS formation.Abbreviations EM electron microscopy - ER endoplasmic reticulum - IS intercellular space - MC mesophyll cell - MSB microtubule stabilizing buffer - Mt microtubule - PBS phosphate buffered saline  相似文献   

19.
Two strains of pathogenic Naegleria were employed to infect mice and monkey kidney (Vero line) cell cultures. Mice were infected intranasally. Moribund mice were sacrificed and their brains processed for light and electron microscopy. The normal architecture of the infected brain was completely destroyed; the olfactory lobes and the cerebral cortex showed the heaviest damage. The inflammatory response was mainly in the form of neutrophil polymorphs (PMN) and was confined to the olfactory lobes and the superficial regions of cerebral cortex. Numerous amebas were seen interspersed with the degenerating neurons, glial processes, and PMN. Most conspicuous were the food vacuoles which contained host tissue in various stages of digestion. Amebas in the brain tissue also produced many micropinocytotic vesicles from the surface of the plasma membrane. These vesicles are interpreted as vehicles of transport of nutritive materials from the host tissue. The infected cell culture showed the characteristic cytopathic effect (CPE). The CPE was chiefly in the form of cell shrinkage, nuclear pycnosis and discontinuity of cell sheet. Amebas were often seen in an intracellular location. The Vero cells produced many fuzzy pinocytotic vesicles at these loci where the ameba plasma membrane and Vero cell membrane were in close apposition; the probable significance of this is discussed. Most impressive, however, were the pseudopodial formation and capturing of the host material which indicated the great phagocytic activity of the amebas. This was confirmed further by the presence of large numbers of food vacuoles containing host material in various stages of digestion. These observations show that the amebas invade and destroy the brain tissue by active phagocytosis.  相似文献   

20.
Ultrastructural studies on tetraspore formation in Levringiella gardneri revealed that 3 stages may be recognized during their formation. The youngest stage consists of a uninucleate tetraspore mother cell with synaptonemal complexes present during early prophase of meiosis I. Mitochondria are aggregated around the nucleus, dictyosome activity is low, and chloroplasts occur in the peripheral cytoplasm. A 4-nucleate tetraspore mother cell is formed prior to tetrahedral cell cleavage, and an increase in the number of chloroplasts and mitochondria occurs. Small straight-profiled dictyosomes secrete vesicles into larger fibrous vesicles or contribute material to the developing tetraspore wall. During the second stage of tetraspore formation, striated vesicles form within endoplasmic reticulum, semicircular profiled dictyosomes secrete vesicles for fibrous vesicles or wall material, and starch formation increases. The final stage is characterized by the disappearance of striated vesicles, presence of straight, large dictyosomes which secrete cored vesicles, and an abundance of starch grains. Cleavage is usually complete at this stage and the tetraspore wall consists of a narrow outer layer of fibrillar material and an inner, electron transparent layer. These spores are surrounded by a tetrasporangial wall which was the original wall surrounding the tetraspore mother cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号