首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《The Journal of cell biology》1993,123(5):1133-1147
The goal of this research is to identify and characterize the protein machinery that functions in the intracellular translocation and assembly of peroxisomal proteins in Saccharomyces cerevisiae. Several genes encoding proteins that are essential for this process have been identified previously by Kunau and collaborators, but the mutant collection was incomplete. We have devised a positive selection procedure that identifies new mutants lacking peroxisomes or peroxisomal function. Immunofluorescence procedures for yeast were simplified so that these mutants could be rapidly and efficiently screened for those in which peroxisome biogenesis is impaired. With these tools, we have identified four complementation groups of peroxisome biogenesis mutants, and one group that appears to express reduced amounts of peroxisomal proteins. Two of our mutants lack recognizable peroxisomes, although they might contain peroxisomal membrane ghosts like those found in Zellweger syndrome. Two are selectively defective in packaging peroxisomal proteins and moreover show striking intracellular clustering of the peroxisomes. The distribution of mutants among complementation groups implies that the collection of peroxisome biogenesis mutants is still incomplete. With the procedures described, it should prove straightforward to isolate mutants from additional complementation groups.  相似文献   

3.
We have developed a positive selection system for the isolation of Saccharomyces cerevisiae mutants with disturbed peroxisomal functions. The selection is based on the lethality of hydrogen peroxide (H2O2) that is produced in wild type cells during the peroxisomal beta-oxidation of fatty acids. In total, 17 mutants having a general impairment of peroxisome biogenesis were isolated, as revealed by their inability to grow on oleic acid as the sole carbon source and their aberrant cell fractionation pattern of peroxisomal enzymes. The mutants were shown to have monogenetic defects and to fall into 12 complementation groups. Representative members of each complementation group were morphologically examined by immunocytochemistry using EM. In one mutant the induction and morphology of peroxisomes is normal but import of thiolase is abrogated, while in another the morphology differs from the wild type: stacked peroxisomal membranes are present that are able to import thiolase but not catalase. These mutants suggest the existence of multiple components involved in peroxisomal protein import. Some mutants show the phenotype characteristic of glucose-repressed cells, an indication for the interruption of a signal transduction pathway resulting in organelle proliferation. In the remaining mutants morphologically detectable peroxisomes are absent: this phenotype is also known from fibroblasts of patients suffering from Zellweger syndrome, a disorder resulting from impairment of peroxisomes.  相似文献   

4.
We have identified two temperature-sensitive peroxisome-deficient mutants of Hansenula polymorpha (ts6 and ts44) within a collection of ts mutants which are impaired for growth on methanol at 43 degrees C but grow well at 35 degrees C. In both strains peroxisomes were completely absent in cells grown at 43 degrees C; the major peroxisomal matrix enzymes alcohol oxidase, dihydroxyacetone synthase and catalase were synthesized normally but assembled into the active enzyme protein in the cytosol. As in wild-type cells, these enzymes were present in peroxisomes under permissive growth conditions (< or = 37 degrees C). However, at intermediate temperatures (38-42 degrees C) they were partly peroxisome-bound and partly resided in the cytosol. Genetic analysis revealed that both mutant phenotypes were due to monogenic recessive mutations mapped in the same gene, designated PER13. After a shift of per13-6ts cells from restrictive to permissive temperature, new peroxisomes were formed within 1 h. Initially one--or infrequently a few--small organelles developed which subsequently increased in size and multiplied by fission during prolonged permissive growth. Neither mature peroxisomal matrix nor membrane proteins, which were present in the cytosol prior to the temperature shift, were incorporated into the newly formed organelles. Instead, these proteins remained unaffected (and active) in the cytosol concomitant with further peroxisome development. Thus in H.polymorpha alternative mechanisms of peroxisome biogenesis may be possible in addition to multiplication by fission upon induction of the organelles by certain growth substrates.  相似文献   

5.
The biogenesis and maintenance of cellular organelles is of fundamental importance in all eukaryotic cells. One such organelle is the peroxisome. The establishment of a genetic system to study peroxisome biogenesis in the methylotrophic yeast Pichia pastoris has yielded many different complementation groups of peroxisomal assembly (pas) or peroxisome-deficient (per) mutants. Each appears to be deficient in functional peroxisomes. One of these mutants, pas5, has been characterized, complemented, and the gene sequenced. Ultrastructural studies show that normal peroxisomes are not present in pas5, but aberrant peroxisomal structures resembling "membranous ghosts" are frequently observed. The "peroxisome ghosts" appear to be induced and segregated to daughter cells normally. Biochemical fractionation analysis of organelles of the pas5 mutant reveals that peroxisomal matrix enzymes are induced normally but are found mostly in the cytosol. However, purification of peroxisome ghosts from the mutant shows that small amounts (< 5%) of matrix enzymes are imported. The PAS5 gene was cloned and found to encode a 127-kD protein, which contains a 200-amino acid-long region of homology with PAS1, NEM- sensitive factor (NSF), and other related ATPases. Weak homology to a yeast myosin was also observed. The gene is not essential for growth on glucose but is essential for growth on oleic acid and methanol. The role of PAS5 in peroxisome biogenesis is discussed.  相似文献   

6.
We describe the cloning of the Hansenula polymorpha PER1 gene and the characterization of the gene and its product, PER1p. The gene was cloned by functional complementation of a per1 mutant of H. polymorpha, which was impaired in the import of peroxisomal matrix proteins (Pim- phenotype). The DNA sequence of PER1 predicts that PER1p is a polypeptide of 650 amino acids with no significant sequence similarity to other known proteins. PER1 expression was low but significant in wild-type H. polymorpha growing on glucose and increased during growth on any one of a number of substrates which induce peroxisome proliferation. PER1p contains both a carboxy- (PTS1) and an amino- terminal (PTS2) peroxisomal targeting signal which both were demonstrated to be capable of directing bacterial beta-lactamase to the organelle. In wild-type H. polymorpha PER1p is a protein of low abundance which was demonstrated to be localized in the peroxisomal matrix. Our results suggest that the import of PER1p into peroxisomes is a prerequisite for the import of additional matrix proteins and we suggest a regulatory function of PER1p on peroxisomal protein support.  相似文献   

7.
We have cloned the Hansenula polymorpha PEX14 gene by functional complementation of the chemically induced pex14-1 mutant, which lacked normal peroxisomes. The sequence of the PEX14 gene predicts a novel protein product (Pex14p) of 39 kDa which showed no similarity to any known protein and lacked either of the two known peroxisomal targeting signals. Biochemical and electron microscopical analysis indicated that Pex14p is a component of the peroxisomal membrane. The synthesis of Pex14p is induced by peroxisome-inducing growth conditions. In cells of both pex14-1 and a PEX14 disruption mutant, peroxisomal membrane remnants were evident; these contained the H.polymorpha peroxisomal membrane protein Pex3p together with a small amount of the major peroxisomal matrix proteins alcohol oxidase, catalase and dihydroxyacetone synthase, the bulk of which resided in the cytosol. Unexpectedly, overproduction of Pex14p in wild-type H. polymorpha cells resulted in a peroxisome-deficient phenotype typified by the presence of numerous small vesicles which lacked matrix proteins; these were localized in the cytosol. Apparently, the stoichiometry of Pex14p relative to one or more other components of the peroxisome biogenesis machinery appears to be critical for protein import.  相似文献   

8.
In a recent study, we performed a systematic genome analysis for the conservation of genes involved in peroxisome biogenesis (PEX genes) in various fungi. We have now performed a systematic study of the morphology of peroxisome remnants ('ghosts') in Hansenula polymorpha pex mutants (pex1-pex20) and the level of peroxins and matrix proteins in these strains. To this end, all available H. polymorpha pex strains were grown under identical cultivation conditions in glucose-limited chemostat cultures and analyzed in detail. The H. polymorpha pex mutants could be categorized into four distinct groups, namely pex mutants containing: (1) virtually normal peroxisomal structures (pex7, pex17, pex20); (2) small peroxisomal membrane structures with a distinct lumen (pex2, pex4, pex5, pex10, pex12, pex14); (3) multilayered membrane structures lacking apparent matrix protein content (pex1, pex6, pex8, pex13); and (4) no peroxisomal structures (pex3, pex19).  相似文献   

9.
10.
11.
Zellweger cerebro-hepato-renal syndrome is a severe congenital disorder associated with defective peroxisomal biogenesis. At least 23 PEX genes have been reported to be essential for peroxisome biogenesis in various species, indicating the complexity of peroxisomal assembly. Cells from patients with peroxisomal biogenesis disorders have previously been shown to segregate into >/=12 complementation groups. Two patients assigned to complementation group G who had not been linked previously to a specific gene defect were confirmed as displaying a cellular phenotype characterized by a lack of even residual peroxisomal membrane structures. Here we demonstrate that this complementation group is associated with mutations in the PEX3 gene, encoding an integral peroxisomal membrane protein. Homozygous PEX3 mutations, each leading to C-terminal truncation of PEX3, were identified in the two patients, who both suffered from a severe Zellweger syndrome phenotype. One of the mutations involved a single-nucleotide insertion in exon 7, whereas the other was a single-nucleotide substitution eight nucleotides from the normal splice site in the 3' acceptor site of intron 10. Expression of wild-type PEX3 in the mutant cell lines restored peroxisomal biogenesis, whereas transfection of mutated PEX3 cDNA did not. This confirmed that the causative gene had been identified. The observation of peroxisomal formation in the absence of morphologically recognizable peroxisomal membranes challenges the theory that peroxisomes arise exclusively by growth and division from preexisting peroxisomes and establishes PEX3 as a key factor in early human peroxisome synthesis.  相似文献   

12.
To study peroxisome biogenesis, we developed a procedure to select for Saccharomyces cerevisiae mutants defective in peroxisomal protein import or peroxisome assembly. For this purpose, a chimeric gene was constructed encoding the bleomycin resistance protein linked to the peroxisomal protein luciferase. In wild-type cells this chimeric protein is imported into the peroxisome, which prevents the neutralizing interaction of the chimeric protein with its toxic phleomycin ligand. Peroxisomal import and peroxisome assembly mutants are unable to import this chimeric protein into their peroxisomes. This enables the bleomycin moiety of the chimeric protein to bind phleomycin, thereby preventing its toxicity. The selection is very efficient: upon mutagenesis, 84 (10%) of 800 phleomycin resistant colonies tested were unable to grow on oleic acid. This rate could be increased to 25% using more stringent selection conditions. The selection procedure is very specific; all oleic acid non utilizing (onu) mutants tested were disturbed in peroxisomal import and/or peroxisome assembly. The pas (peroxisome assembly) mutants that have been used for complementation analysis represent 12 complementation groups including three novel ones, designated pas20, pas21 and pas22.  相似文献   

13.
Most mammalian cell strains genetically deficient in peroxisome biogenesis have abnormal membrane structures called ghosts, containing integral peroxisomal membrane protein, PMP70, but lacking the peroxisomal matrix proteins. Upon genetic complementation, these mutants regain the ability of peroxisome biogenesis. It is postulated that, in this process, the ghosts act as the precursors of peroxisomes, but there has been no evidence to support this. In the present study, we investigated this issue by protein microinjection to a mutant Chinese hamster ovary cell line defective of PEX5, encoding a peroxisome-targeting signal receptor. When recombinant Pex5p and green fluorescent protein (GFP) carrying a peroxisome-targeting signal were co-injected into the mutant cells, the GFP fluorescence gathered over time to particulate structures where PMP70 was co-localized. This process was dependent on both Pex5p and the targeting signal, and, most importantly, occurred even in the presence of cycloheximide, a protein synthesis inhibitor. These findings suggest that the ghosts act as acceptors of matrix proteins in the peroxisome recovery process at least in the PEX5 mutant, and support the view that peroxisomes can grow by incorporating newly synthesized matrix proteins.  相似文献   

14.
Peroxisome biogenesis inSaccharomyces cerevisiae   总被引:2,自引:0,他引:2  
  相似文献   

15.
Two peroxisome targeting signals (PTSs) for matrix proteins have been well defined to date. PTS1 comprises a COOH-terminal tripeptide, SKL, and has been found in several matrix proteins, whereas PTS2 has been found only in peroxisomal thiolase and is contained within an NH2- terminal cleavable presequence. We have investigated the functional integrity of the import routes for PTS1 and PTS2 in fibroblasts from patients suffering from peroxisome assembly disorders. Three of the five complementation groups tested showed a general loss of PTS1 and PTS2 import. Two complementation groups showed a differential loss of peroxisomal protein import: group I cells were able to import a PTS1- but not a PTS2- containing reporter protein into their peroxisomes, and group IV cells were able to import the PTS2 but not the PTS1 reporter into aberrant, peroxisomal ghostlike structures. The observation that the PTS2 import pathway is intact only in group IV cells is supported by the protection of endogenous thiolase from protease degradation in group IV cells and its sensitivity in the remaining complementation groups, including the partialized disorder of group I. The functionality of the PTS2 import pathway and colocalization of endogenous thiolase with the peroxisomal membranes in group IV cells was substantiated further using immunofluorescence, subcellular fractionation, and immunoelectron microscopy. The phenotypes of group I and IV cells provide the first evidence for differential import deficiencies in higher eukaryotes. These phenotypes are analogous to those found in Saccharomyces cerevisiae peroxisome assembly mutants.  相似文献   

16.
We have previously reported the isolation of Chinese hamster ovary (CHO) cell mutants that are defective in the biosynthesis of plasmalogens, deficient in at least two peroxisomal enzymes (dihydroxyacetonephosphate (DHAP) acyltransferase and alkyl-DHAP synthase), and in which catalase is not found within peroxisomes (Zoeller, R. A., and Raetz, C. R. H. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5170). We now provide further evidence that three such strains are more generally defective in peroxisome biogenesis. Electron microscopic cytochemistry revealed that the mutants did not contain recognizable peroxisomes. However, immunofluorescence microscopy using an antibody directed against peroxisomal integral membrane proteins revealed the presence of peroxisomal membrane ghosts resembling those seen in cells of patients suffering from one of the human peroxisomal disorders, Zellweger syndrome. Immunoblot analyses, using antibodies specific for peroxisomal matrix proteins, demonstrated deficiencies of peroxisomal proteins in the mutant CHO cells that were similar to those in Zellweger syndrome. Fusion of a CHO mutant with fibroblasts obtained from Zellweger patients resulted in restoration of peroxisomal dihydroxyacetonephosphate acyltransferase and peroxisomal acyl-coenzyme A oxidation activities. The hybrid cells also regained the ability to synthesize plasmenylethanolamine. Moreover, normal peroxisomes were seen by immunofluorescence in the hybrid cells. These results indicate that the hybrid cells have recovered the ability to assemble peroxisomes and that, although the mutant CHO cells are biochemically and morphologically very similar to cells from patients with Zellweger syndrome, the genetic lesions are distinct. Our somatic cell mutants should be useful in identifying factors and genes involved in peroxisome biogenesis and may aid the genetic categorization of the various peroxisomal disorders.  相似文献   

17.
Peroxisomes participate in many important functions in plants, including seed reserve mobilization, photorespiration, defense against oxidative stress, and auxin and jasmonate signaling. In mammals, defects in peroxisome biogenesis result in multiple system abnormalities, severe developmental delay, and death, whereas in unicellular yeasts, peroxisomes are dispensable unless required for growth of specific substrates. PEX10 encodes an integral membrane protein required for peroxisome biogenesis in mammals and yeast. To investigate the importance of PEX10 in plants, we characterized a Ds insertion mutant in the PEX10 gene of Arabidopsis (AtPEX10). Heterozygous AtPEX10::dissociation element mutants show normal vegetative phenotypes under optimal growth conditions, but produce about 20% abnormal seeds. The embryos in the abnormal seeds are predominantly homozygous for the disruption allele. They show retarded development and some morphological abnormalities. No viable homozygous mutant plants were obtained. AtPEX10 fused to yellow fluorescent protein colocalized with green fluorescent protein-serine-lysine-leucine, a well-documented peroxisomal marker, suggesting that AtPEX10 encodes a peroxisomal protein that is essential for normal embryo development and viability.  相似文献   

18.
In higher plants, peroxisomes accomplish a variety of physiological functions such as lipid catabolism, photorespiration and hormone biosynthesis. Recently, many factors regulating peroxisomal biogenesis, so-called PEX genes, have been identified not only in plants but also in yeasts and mammals. In the Arabidopsis genome, the presence of at least 22 PEX genes has been proposed. Here, we clarify the physiological functions of 18 PEX genes for peroxisomal biogenesis by analyzing transgenic Arabidopsis plants that suppressed the PEX gene expression using RNA interference. The results indicated that the function of these PEX genes could be divided into two groups. One group involves PEX1, PEX2, PEX4, PEX6, PEX10, PEX12 and PEX13 together with previously characterized PEX5, PEX7 and PEX14. Defects in these genes caused loss of peroxisomal function due to misdistribution of peroxisomal matrix proteins in the cytosol. Of these, the pex10 mutant showed pleiotropic phenotypes that were not observed in any other pex mutants. In contrast, reduced peroxisomal function of the second group, including PEX3, PEX11, PEX16 and PEX19, was induced by morphological changes of the peroxisomes. Cells of the pex16 mutant in particular possessed reduced numbers of large peroxisome(s) that contained unknown vesicles. These results provide experimental evidence indicating that all of these PEX genes play pivotal roles in regulating peroxisomal biogenesis. We conclude that PEX genes belonging to the former group are involved in regulating peroxisomal protein import, whereas those of the latter group are important in maintaining the structure of peroxisome.  相似文献   

19.
We established a Chinese hamster ovary cell line having a temperature-sensitive phenotype in peroxisome biogenesis. This mutant (65TS) was produced by transforming a PEX2-defective mutant, Z65, with a mutant PEX2 gene, PEX2(E55K), derived from a patient with infantile Refsum disease, a milder form of peroxisome biogenesis disorder. In 65TS, catalase was found in the cytosol at a nonpermissive temperature (39 degrees C), but upon the shift to a permissive temperature (33 degrees C), catalase gradually localized to the structures containing a 70-kDa peroxisomal membrane protein, PMP70. In contrast to catalase, other matrix proteins containing typical peroxisome targeting signals, acyl-CoA oxidase and peroxisomal 3-ketoacyl-CoA thiolase, were co-localized with PMP70 in most cells, even at 39 degrees C. We found that these structures are partially functional peroxisomes and named them "catalase-less peroxisomes." Catalase-less peroxisomes were also observed in human fibroblasts from patients with milder forms of peroxisome biogenesis disorder, including the one from which the mutant PEX2 gene was derived. We suggest that these structures are the causes of the milder phenotypes of the patients. Temperature-dependent restoration of the peroxisomes in 65TS occurred even in the presence of cycloheximide, a protein synthesis inhibitor. Thus, we conclude that in 65TS, catalase-less peroxisomes are the direct precursors of peroxisomes.  相似文献   

20.
Pex3p is a peroxisomal integral membrane protein required early in peroxisome biogenesis, and Pex3p-deficient cells lack identifiable peroxisomes. Two temperature-sensitive pex3 mutant strains of the yeast Yarrowia lipolytica were made to investigate the role of Pex3p in the early stages of peroxisome biogenesis. In glucose medium at 16 degrees C, these mutants underwent de novo peroxisome biogenesis and exhibited early matrix protein sequestration into peroxisome-like structures found at the endoplasmic reticulum-rich periphery of cells or sometimes associated with nuclei. The de novo peroxisome biogenesis seemed unsynchronized, with peroxisomes occurring at different stages of development both within cells and between cells. Cells with peripheral nascent peroxisomes and cells with structures morphologically distinct from peroxisomes, such as semi/circular tubular structures that immunostained with antibodies to peroxisomal matrix proteins and to the endoplasmic reticulum-resident protein Kar2p, and that surrounded lipid droplets, were observed during up-regulation of peroxisome biogenesis in cells incubated in oleic acid medium at 16 degrees C. These structures were not detected in wild-type or Pex3p-deficient cells. Their role in peroxisome biogenesis remains unclear. Targeting of peroxisomal matrix proteins to these structures suggests that Pex3p directly or indirectly sequesters components of the peroxisome biogenesis machinery. Such a role is consistent with Pex3p overexpression producing cells with fewer, larger, and clustered peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号