首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Groups of Syrian hamsters were exposed to LD cycles with twilight transitions and photoperiods simulating natural lighting conditions at the summer solstice (SS), equinox, and winter solstice (WS) at 41 degrees N and at the winter solstice at the Arctic Circle (WS 66 degrees N) but with daytime illuminance truncated at 10 lux (LD-twilight). Separate groups were kept under matching rectangular cycles (LD-rectangular). The inclusion of twilights affected several circadian parameters in a season-and latitude-dependent manner. The most striking difference was in the timing of activity onsets, which followed dusk in the presence of twilights but were more closely related to dawn (lights-on) in their absence. Activity offsets and midpoints were also earlier in LD-twilight than in LD-rectangular, with the differences being most pronounced under WS 66 degrees N. In LD-twilight, longer nights resulted in earlier offsets and midpoints, but in LD-rectangular, midpoints were later under long than under short nights while offsets did not vary significantly. In LD-twilight, activity duration (alpha) increased monotonically with increasing nighttime duration, but in LD-rectangular, alpha was shorter under WS 66 degrees N than under WS conditions. These effects of season and latitude observed in LD-twilight were similar to those reported in animals exposed to natural illumination, while those observed in LD-rectangular differed in several respects. The presence of twilights also resulted in lower day-to-day variability in activity onset times (greater precision), supporting the earlier conclusion that twilights increase the strength of the LD zeitgeber. Free-running periods in constant darkness (DD) were shorter in LD-twilight than in LD-rectangular, especially under WS 66 degrees N, raising the possibility that the effects of twilights on the timing of the entrained activity rhythm reflect their effects on the period of that rhythm. Increasing daytime illuminance to 100 lux (WS conditions only) resulted in earlier activity offsets and midpoints and a shorter alpha but had no effect on activity onsets or on subsequent period in DD. These results indicate that exposure to low twilight illuminances alone can account for several of the documented differences between the effects of natural and rectangular light cycles on circadian entrainment.  相似文献   

2.
The range of entrainment of the circadian rhythm of locomotor activity was compared in four groups of Syrian hamsters (eight animals per group) initially exposed to daily light-dark (LD) cycles with either abrupt transitions between light and darkness (LD-rectangular) or simulated twilights (LD-twilight). Lighting was provided by arrays of white light-emitting diodes; daytime illuminance (10 lux) and the total amount of light emitted per day were the same in the two conditions. The period (T) of the LD cycles was then gradually increased to 26.5 h or gradually decreased to 21.5 h, at the rate of 5 min/day. Under LD-rectangular, the upper and lower limits of entrainment were 25.0 to 25.5 h and 22.0 to 22.5 h, respectively, whereas under LD-twilight, 50% of the animals exposed to the lengthening cycles were still entrained at T = 26.5 h and 50% of those exposed to the shortening cycles were still entrained at T = 21.5 h. In a second experiment, two groups of hamsters were exposed to fixed T = 25 h LD-rectangular (n = 15) or LD-twilight cycles (n = 7). Only 33% of the animals entrained in LD-rectangular, whereas 86% of the animals entrained in LD-twilight. Free-running periods in constant darkness were longer following successful entrainment to T = 25 h but did not differ between the animals that entrained to LD-rectangular and those that entrained to LD-twilight. The widening of the range of entrainment observed in LD-twilight indicates that twilight transitions increase the strength of the LD zeitgeber. In LD-twilight, successful entrainment to T = 26.5 h was accompanied by an expansion of activity time to 16.52+/-1.22 h, with activity onsets preceding mid-dusk by 12.56+/-2.15 h. Together with earlier data showing similar phase response curves for hour-long dawn, dusk, and rectangular light pulses, these results suggest that the effect of twilights on the range of entrainment may involve parametric rather than nonparametric mechanisms.  相似文献   

3.
Observational data collected in the field and in enclosures show that diurnal, burrow-dwelling European ground squirrels (Spermophilus citellus) never were above ground during twilight at dawn or at dusk. The animals emerged on average 4.02 h (SD = 0.45) after civil twilight at dawn and retreated in their burrows on average 2.87 h (SD = 0.47) before civil twilight at dusk. Daily patterns of light perceived by these burrowing mammals were measured with light-sensitive radio collar transmitters in an enclosure (the Netherlands) and in the field (Hungary). The observational data are corroborated by the telemetry data, which show clear daily patterns of timing of light perception including light perceived from the burrow entrances. The first light was observed by the animals on average 3.54 h (enclosure, SD = 0.45) and 3.60 h (field, SD = 0.31) after civil twilight at dawn, whereas the final observed light was on average 3.04 h (enclosure, SD = 0.64) and 2.02 h (field, SD = 0.72) before civil twilight at dusk. Thus, the animals do not perceive the rapid natural light-dark (LD) transitions that occur at civil twilight. Instead, they generate their own pattern of exposure to light within the natural LD cycle. The classical phase response model for entrainment by light or dark pulses cannot explain how the circadian system of this species remains entrained to the external, natural LD cycle while the major LD transitions are created by its own behavior.  相似文献   

4.
The study aimed to determine the influence of repeated natural dawn and dusk twilight pulses in entraining the circadian flight activity rhythm of the microchiropteran bat, Hipposideros speoris, free‐running in constant darkness in a natural cave. The bats were exposed to repeated dawn or dusk twilight pulses at eight circadian phases. All bats exposed to dawn twilight pulses were entrained by advancing transients, and the stable entrainment was reached when the onset of activity occurred about 12 h before the lights‐on of the pulses, irrespective of the initial phase at which the bats were exposed to twilight. All bats exposed to dusk twilight pulses, however, were entrained by delaying transients, and the stable entrainment was reached when the onset of activity occurred about 1.6 h after the lights‐on of the pulses. The entrainment caused by dawn and dusk twilight pulses is discussed in the context of the postulated two photoreceptors: the short wavelength sensitive (S) photoreceptors mediating entrainment via dusk twilight, and the medium wavelength sensitive (M) photoreceptors mediating entrainment via dawn twilight.  相似文献   

5.
The study aimed to determine the influence of repeated natural dawn and dusk twilight pulses in entraining the circadian flight activity rhythm of the microchiropteran bat, Hipposideros speoris, free-running in constant darkness in a natural cave. The bats were exposed to repeated dawn or dusk twilight pulses at eight circadian phases. All bats exposed to dawn twilight pulses were entrained by advancing transients, and the stable entrainment was reached when the onset of activity occurred about 12 h before the lights-on of the pulses, irrespective of the initial phase at which the bats were exposed to twilight. All bats exposed to dusk twilight pulses, however, were entrained by delaying transients, and the stable entrainment was reached when the onset of activity occurred about 1.6 h after the lights-on of the pulses. The entrainment caused by dawn and dusk twilight pulses is discussed in the context of the postulated two photoreceptors: the short wavelength sensitive (S) photoreceptors mediating entrainment via dusk twilight, and the medium wavelength sensitive (M) photoreceptors mediating entrainment via dawn twilight.  相似文献   

6.
Locomotor activity rhythm in the hypogean population of Nemacheilus evezardi was recorded first under light-to-dark (LD) 12 : 12 h cycle and then DD. The results were compared with that of its epigean counterpart held under comparable regimes. In LD 12 : 12, while hypogean loach exhibited a distinct bimodality in its locomotor activity rhythm, it was altogether absent in the case of epigean population. In hypogean loach, dark-to-light transition peak in LD was observed to free-run under DD. The same was not discernible in case of epigean loach. The locomotor activity rhythm in epigean fish was noticed to free-run in DD either from the dawn peak or dusk peak in LD. It is hypothesized that the hypogean fish still possesses a functional oscillator underlying its overt circadian rhythm in locomotor activity. The ecophysiological significance of these findings is yet to be fully understood.  相似文献   

7.
In addition to light cycles, temperature cycles are among the most important synchronizers in nature. Indeed, both clock gene expression and circadian activity rhythms entrain to thermocycles. This study aimed to extend our knowledge of the relative strength of light and temperature as zeitgebers for zebrafish locomotor activity rhythms. When the capacity of a 24∶20°C (thermophase∶cryophase, referred to as TC) thermocycle to synchronize activity rhythms under LL was evaluated, it was found that most groups (78%) synchronized to these conditions. Under LD, when zebrafish were allowed to select the water temperature (24°C vs. 20°C), most fish selected the higher temperature and showed diurnal activity, while a small (25%) percentage of fish that preferred the lower temperature displayed nocturnal activity. Under conflicting LD and TC cycles, fish showed diurnal activity when the zeitgebers were in phase or in antiphase, with a high percentage of activity displayed around dawn and dusk (22% and 34% of the total activity for LD/TC and LD/CT, respectively). Finally, to test the relative strength of each zeitgeber, fish were subjected to ahemeral cycles of light (T=25 h) and temperature (T=23 h). Zebrafish synchronized mostly to the light cycle, although they displayed relative coordination, as their locomotor activity increased when light and thermophase coincided. These findings show that although light is a stronger synchronizer than temperature, TC cycles alone can entrain circadian rhythms and interfere in their light synchronization, suggesting the existence of both light‐ and temperature‐entrainable oscillators that are weakly coupled.  相似文献   

8.
Phase‐response curves (PRCs) for the circadian rhythm of flight activity of the microchiropteran bat (Hipposideros speoris) were determined in a cave, employing discrete natural dawn and dusk twilight pulses. These PRCs are reported for the first time for any circadian system and they are unlike other PRCs constructed for nocturnal mammals. Dawn and dusk twilight pulses evoked advance and delay phase shifts, respectively. Advance phase shifts were followed by 3 to 4 advancing transients and a subsequent shortening of free‐running period (τ); whereas, the delay phase shifts were instantaneous without any transients but with a subsequent lengthening of τ.  相似文献   

9.
In rodents, the alternation of light and dark is the main synchronizer of circadian rhythms. The entrainment abilities of the LD cycle could be estimated by experimental modifications of the photoperiod and by following the subsequent temporal distribution of a circadian rhythm. The rate of reentrainment of a rhythm is determined by the nature of the studied variable, by the direction (advance or delay) and the magnitude (or value) of the phase shift. In rodents, core body temperature and motor activity are known to be well synchronized with each other under L:D 12:12 and under constant conditions (LL or DD). There are clear evidences that the circadian pattern of motor activity is generated by two oscillators, one from dusk signal and the other from dawn signal. Whether the circadian rhythms of body temperature and motor activity are generated by a common circadian mechanism or controlled by separate ones still remains unknown. The purpose of this review is to summarize the results obtained on the circadian rhythms of body temperature and motor activity throughout the daily cycle in order to clarify the relationships between these two functions.  相似文献   

10.
Animals of the amphipod Orchestia montagui are kept in constant darkness with two short light pulses. One pulse is applied at the beginning of subjective night (around the dusk) and the other one at the end of subjective night (around the dawn). The pulse duration is estimated in the order of one or two hours around the dusk as well as the dawn. The locomotor activity rhythm was monitored in individual animals in summer under constant temperature. Results revealed that whatever the experimental conditions, under continuous or interrupted darkness by pulses, two endogenous components have been highlighted. In fact, Periodogram analysis showed the presence of ultradian and circadian periods around 12 and 24 h, respectively. The shortest circadian period and the most important inter-individual variability was observed under pulse of 2 h around the dusk with mean value equal to τDD+pulse = 24h38′ ± 4h34′. The activity profiles are in majority unimodal. Moreover, the most activity peak showed a slipping of its location from the middle of subjective night under constant darkness to the middle of subjective day under pulse. Globally, the locomotor activity rhythm of O. montagui was better defined under pulses and specimens were significantly more active under continuous darkness. Moreover, a great variability around the activity time was observed especially with pulse of 1 h.  相似文献   

11.
This study examined whether the daily rhythms of locomotor activity and behavioural thermoregulation that have previously been observed in Australian sleepy lizards (Tiliqua rugosa) under field conditions are true circadian rhythms that persist in constant darkness (DD) and whether these rhythms show similar characteristics. Lizards held on laboratory thermal gradients in the Australian spring under the prevailing 12-hour light : dark (LD) cycle for 14 days displayed robust daily rhythms of behavioural thermoregulation and locomotor activity. In the 13-day period of DD that followed LD, most lizards exhibited free-running circadian rhythms of locomotor activity and behavioural thermoregulation. The predominant activity pattern displayed in LD was unimodal and this was retained in DD. While mean levels of skin temperature and locomotor activity were found to decrease from LD to DD, activity duration remained unchanged. The present results demonstrate for the first time that this species’ daily rhythm of locomotor activity is an endogenous circadian rhythm. Our results also demonstrate a close correlation between the circadian activity and thermoregulatory rhythms in this species indicating that the two rhythms are controlled by the same master oscillator(s). Future examination of seasonal aspects of these rhythms, may, however, cause this hypothesis to be modified.  相似文献   

12.
The authors' previous experiments have shown that dawn simulation at low light intensities can phase advance the circadian rhythm of melatonin in humans. The aim of this study was to compare the effect of repeated dawn signals on the phase position of circadian rhythms in healthy participants kept under controlled light conditions. Nine men participated in two 9-day laboratory sessions under an LD cycle 17.5:6.5 h, < 30:0 lux, receiving 6 consecutive daily dawn (average illuminance 155 lux) or control light (0.1 lux) signals from 0600 to 0730 h (crossover, random-order design). Two modified constant routine protocols before and after the light stimuli measured salivary melatonin (dim light melatonin onset DLMOn and offset DLMOff) and rectal temperature rhythms (midrange crossing time [MRCT]). Compared with initial values, participants significantly phase delayed after 6 days under control light conditions (at least -42 min DLMOn, -54 min DLMOff, -41 min MRCT) in spite of constant bedtimes. This delay was not observed with dawn signals (+10 min DLMOn, +2 min DLMOff, 0 min MRCT). Given that the endogenous circadian period of the human circadian pacemaker is slightly longer than 24 h, the findings suggest that a naturalistic dawn signal is sufficient to forestall this natural delay drift. Zeitgeber transduction and circadian system response are hypothesized to be tuned to the time-rate-of-change of naturalistic twilight signals.  相似文献   

13.
In order to investigate the potential causal link between the rhythm of activity and body temperature, we simultaneously recorded rectal temperature and total locomotor activity in five clinically healthy female rabbits (blue Vienna breed), 12 week old and mean body weight 2.7 ± 0.3. Animals were housed in individual cages (90?×?50?×?35 cm) under natural 12/12 light/dark cycle. Total locomotor activity was monitored for 15 days by an activity data logger. On day 1, 5, 10, and 15 rectal temperature was recorded every 2 h for a 24-h period. Application of single cosinor method showed a nocturnal daily rhythm of rectal temperature with a range of oscillation of about 1 °C, acrophase after dusk and low robustness value. The daily rhythm of locomotor activity showed its acrophase in the middle of the scotophase and a high robustness value. This information improves the knowledge available on the circadian biology of rabbits useful in the evaluation of physiology of this species.  相似文献   

14.
When a light pulse of 1 h duration was given 3 h after lights off in a photoperiod of 11 h light : 13 h dark (LD 11 : 13) at 20°C, the phase of the major peak of locomotor activity rhythm in Delia antiqua was delayed for approximately 0.6 h. In contrast, it was advanced by approximately 0.6 h by a light pulse given 9 h after lights off. It is suggested that in the circadian clock, a pulse falling in the early scotophase is taken as a new dusk and a pulse falling in the late scotophase is taken as a new dawn. Although a sharply defined critical photoperiod did not exist in the diapause response to photoperiod in D. antiqua, the percentage of pupal diapause decreased by these pulses in LD 11 : 13 at 20°C. The effect of a 15 min light pulse on both locomotor activity rhythm and pupal diapause induction was stronger at 3 h than at 9 h after lights off, while a 1 min light pulse was ineffective at both times. The parallel effects of light pulse on locomotor activity rhythm and diapause response might be based on the same chronobiological functions.  相似文献   

15.
Twelve juvenile pink shrimp, Penaeus duorarum Burkenroad, were tested individually for 3-day periods in electronic shuttleboxes to determine their diel patterns of locomotor activity, in relation to a natural summer photoperiod. Nocturnal activity was twice that exhibited during the daytime; however, a bimodal pattern was evident with crepuscular peaks occurring at dawn and dusk. The dusk peak was more pronounced, with activity increasing markedly before sunset (indicative of an endogenous circadian rhythm component), and continuing during the initial hours of darkness, gradually declining later during the night with a secondary peak at dawn falling off to minimal activity during daylight. Crepuscular activity (mean of dawn and dusk) was twice the nocturnal average.  相似文献   

16.
Abstract.  To reveal circadian characteristics and entrainment mechanisms in the Japanese honeybee Apis cerana japonica , the locomotor-activity rhythm of foragers is investigated under programmed light and temperature conditions. After entrainment to an LD 12 : 12 h photoperiodic regime, free-running rhythms are released in constant dark (DD) or light (LL) conditions with different free-running periods. Under the LD 12 : 12 h regime, activity offset occurs approximately 0.4 h after lights-off transition, assigned to circadian time (Ct) 12.4 h. The phase of activity onset, peak and offset, and activity duration depends on the photoperiodic regimes. The circadian rhythm can be entrained to a 24-h period by exposure to submultiple cycles of LD 6 : 6 h, as if the locomotive rhythm is entrained to LD 18 : 6 h. Phase shifts of delay and advance are observed when perturbing single light pulses are presented during free-running under DD conditions. Temperature compensation of the free-running period is demonstrated under DD and LL conditions. Steady-state entrainment of the locomotor rhythm is achieved with square-wave temperature cycles of 10 °C amplitude, but a 5 °C amplitude fails to entrain.  相似文献   

17.
Summary Although pinealectomy or blinding resulted in loss of the clarity of the free-running rhythm of locomotor activity and body temperature and reduced the peak level of circulating melatonin rhythms to approximately a half in intact pigeons, neither pinealectomy nor blinding abolished any of these rhythms. However, when pinealectomy and blinding were combined, the rhythms of locomotor activity and body temperature disappeared in prolonged constant dim light, and melatonin concentration was reduced to the minimum level of detection. In order to examine the role of melatonin in the pigeon's circadian system, it was administered either daily or continuously to PX + EX-pigeons in LLdim. Daily administration of melatonin restored circadian rhythms of locomotor activity which entrained to melatonin injections, but continuous administration did not induce any remarkable change of locomotor activity. These results suggest that melatonin synthesized in the pineal body and the eye contributes to circulating melatonin and its rhythmicity is important for the control of circadian rhythms of locomotor activity and body temperature in the pigeon.Abbreviations LD Light-dark - LLdim constant dim light - LLbright constant bright light - PX pinealectomy - EX blinding - SCN suprachiasmatic nucleus  相似文献   

18.
Photic entrainment of animals in the field is basically attributed to their exposure to the dimly lit nights flanked by the dawn and dusk twilight transitions. This implicates the functional significance of the dimly lit nights as that of the twilight transitions. Recently, the authors have demonstrated that the dimly lit night at 0.0006 lux altered the attributes of the circadian rhythm of locomotor activity of Drosophila jambulina. The present study examined whether the durations of such dimly lit nights affect the entrainment and free-running rhythmicity of D. jambulina. Flies were subjected for 10 days to two types of 24-h lighting regimes in which the photophase (L) was at 10 lux for all flies but the scotophase, which varied in duration from 9 to 15?h, was either at 0 lux (D phase) for control flies or 0.0006 lux (the artificial starlight or S phase) for experimental flies. Thereafter, they were transferred to constant darkness (DD) to compare the after-effects of the dimly lit nights on the period (τ) of free-running rhythm in DD with that of the completely dark nights. Control flies were entrained by all LD cycles, but the experimental flies were entrained only by five LS cycles in which the duration of the S phases ranged from 10 to 14?h. The two LS cycles with very short (9?h) and long (15?h) S phases rendered the flies completely arrhythmic. Control flies started activity shortly before lights-on and continued well after lights-off. The experimental flies, however, commenced activity several hours prior to lights-on but ended activity abruptly at lights-off as the result of a negative masking effect of nocturnal illumination. Length of the midday rest was considerably shorter in the control than in the experimental flies in each lighting regime. The active phase in the control flies was predictably shortened; nonetheless, it was invariable in the experimental flies as the nights lengthened. Transfer from lighting regimes to DD initiated robust free-running rhythmicity in all flies including the arrhythmic ones subjected to LS cycles with 9 and 15?h of scotophases. The τ was profoundly affected by the nocturnal irradiance of the prior entraining lighting regime, as it was always shorter in the experimental than in the control flies. Thus, these results indisputably demonstrate the changes in fundamental properties of the circadian pacemaker of D. jambulina were solely attributed to the extremely dim nocturnal irradiance. This strain of D. jambulina is entrained essentially by the dimly lit natural nights, since it is never exposed to the prevailing photic cues such as the twilight transitions or bright photoperiod, owing to the dense vegetation of its habitat. (Author correspondence: )  相似文献   

19.
Studies on rodents have emphasized that removal of the olfactory bulbs modulates circadian rhythmicity. Using telemetric recordings of both body temperature (Tb) and locomotor activity (LA) in a male nocturnal primate, the gray mouse lemur, the authors investigated the effects of olfactory bulbectomy on (1) the circadian periods of Tb and LA in constant dim light condition, and (2) photic re-entrainment rates of circadian rhythms following 6-h phase shifts of entrained light-dark cycle (LD 12:12). Under free-running condition, bulbectomized males had significantly shorter circadian periods of Tb and LA rhythms than those of control males. However, the profiles of Tb rhythms, characterized by a phase of hypothermia at the beginning of the subjective day, and Tb parameters were not modified by olfactory bulbectomy. Under a light-dark cycle, olfactory bulbectomy significantly modified the expression of daily hypothermia, especially by an increase in the latency to reach minimal daily Tb, suggesting a delayed response to induction of daily hypothermia by light onset. Reentrainment rates following both a 6-h phase advance and a 6-h phase delay of entrained LD were also delayed in bulbectomized males. Olfactory bulbectomy led to significant fragmentation of locomotor activity and increased locomotor activity levels during the resting period. The shortening of circadian periods in bulbectomized males could partly explain the delayed responses to photic stimuli since in control males, the longer the circadian period, the better the response to light entrainment. This experiment shows for the 1st time that olfactory bulbs can markedly modify the circadian system in a primate.  相似文献   

20.
Wheel‐running activity was recorded in Lemniscomys barbarus exposed to different lighting conditions. This rodent shows rhythmic locomotor activity under natural twilight‐light/dark (LD) as well as squared‐LD cycles. A mean of 77% of the activity occurred during the light phase. Under different controlled photoperiods, the quantity of daily locomotor activity was relatively stable except for a lower level in the shortest photoperiod tested (LD 06∶18). The duration of the active phase tended to increase with the duration of the light phase, especially in the longer photoperiods. Whatever the lighting conditions, Lemniscomys barbarus started running before lights‐on and stopped after lights‐off. The phase angle of activity offset relative to lights‐off was stable in each squared‐photoperiod, whereas the phase angle of activity onset relative to lights‐on was significantly the highest under the shortest photoperiods. Recording of activity under constant lighting conditions showed that the daily rhythm of locomotor activity is fundamentally circadian. The endogenous period was slightly<24 h (mean=23.8 h) in permanent darkness and>24 h (mean=24.5 h) in continuous light. Re‐entrainment of the locomotor activity rhythm after a 6 h phase advance or delay requires only four days on average. Moreover, the phase‐responses curve to a 30 min light pulse (200 lux) in Lemniscomys barbarus kept in constant dark reveals large phase shifts according to circadian times (CT). With CT0 being defined as the onset of daily activity, maximum phase delay and advance shifts were observed at CT11 (Δ Ψ=‐5.7 h±2.3 h) and CT21 (Δ Ψ =4.9±1.2 h), respectively. Interestingly, the phase‐response curve to light did not show any dead zone. Immunohistochemical staining of the suprachiasmatic nuclei indicates that arginine vasopressin‐immunoreactive cell bodies and fibers delimited a dorsal subregion that extends laterally and medially. The ventral subregion is rich in vasoactive intestinal peptide‐immunoreactive neurones overlapping a smaller area containing gastrin‐releasing peptide‐expressing cells and receives numerous fibers labeled with neuropeptide Y antibody. The results of this study clearly demonstrate that Lemniscomys barbarus is a diurnal species highly sensitive to the shifting effects of light. Overall, this rodent can be considered a new and interesting model for circadian rhythm neurobiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号