首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrophysiology of the renal Na-K ATPase was studied in isolated perfused amphibian proximal tubules during alterations in bath (serosal) potassium. Intracellular and extracellular ionic activity measurements permitted continuous evaluation of the Nernst potentials for Na+, K+, and Cl- across the basolateral membrane. The cell membrane and transepithelial potential differences and resistances were also determined. Return of K to the basal (serosal) solution after a 20-min incubation in K-free solution hyperpolarized the basolateral membrane to an electrical potential that was more negative than the Nernst potential for either Na, Cl, or K. This constitutes strong evidence that at least under stimulated conditions the Na-K ATPase located at the basolateral membrane of the renal proximal tubule mediates a rheogenic process which directly transfers net charge across the cell membrane. Interpretation of these data in terms of an electrical equivalent circuit permitted calculation of both the rheogenic current and the Na/K coupling ratio of the basolateral pump. During the period between 1 and 3 min after pump reactivation by return of bath K, the basolateral rheogenic current was directly proportional to the intracellular Na activity, and the pump stoichiometry transiently exceeded the coupling ratio of 3Na to 2K reported in other preparations.  相似文献   

2.
Summary. In the kidney the proximal tubule is responsible for the uptake of amino acids. This occurs via a variety of functionally and structurally different amino acid transporters located in the luminal and basolateral membrane. Some of these transporters show an ion-dependence (e.g. Na+, Cl and K+) or use an H+-gradient to drive transport. Only a few amino acid transporters have been cloned or functionally characterized in detail so far and their structure is known, while little is known about a majority of amino acid transporters. Only few attempts have been untertaken looking at the regulation of amino acid transport. We summarized more recent information on amino acid transport in the renal proximal tubule emphasizing functional and regulatory aspects. Received August 8, 1999; Accepted April 20, 2000  相似文献   

3.
To determine the fate of intraluminal glutamine and specifically the role of brush border gamma glutamyltransferase in its hydrolysis and reabsorption, proximal convoluted tubules of rabbits were isolated and perfused with an artificial ultrafiltrate containing 1 mM 14C-glutamine and 3H-PEG as a volume absorption marker. The tubules, average length 0.80 +/- 0.09 mm, were bathed in perfusate containing albumin, 6.5 percent but no glutamine. Aliquots of collectate and bathing media were monitored for total 14C counts while the distribution of radioactive 14C between glutamine and glutamate in the collectate was determined by separation on a Dowex X8 formate form ion-exchange column. After 3 ten minute control periods the perfusate was switched to one containing 1 mM AT-125 in addition to glutamine and after equilibration an additional 3 collections were obtained. Control period glutamine load averaged 16.1 +/- 2.4 pmole/min of which 35 percent was absorbed and 38 and 27 percent excreted as glutamine and glutamate respectively; of the absorbed glutamine 25 percent was metabolized. During AT-125 administration, glutamine delivery averaged 15.0 +/- 2.1 pmole/min of which 57 percent was absorbed; increased absorption occurred at the expence of intraluminal glutamate formation which fell to less than 10 percent. Thus luminal transport and gamma glutamyltransferase mediated hydrolysis appear to compete for available glutamine. Significantly, reducing intraluminal glutamine hydrolysis doubles the cellular metabolism of absorbed glutamine suggesting that extracellular conversion of glutamine to glutamate alters the metabolic fate of filtered glutamine.  相似文献   

4.
5.
Sulphate and phosphate transport in the renal proximal tubule   总被引:2,自引:0,他引:2  
Experiments performed on microperfused proximal tubules and brush-border membrane vesicles revealed that inorganic phosphate is actively reabsorbed in the proximal tubule involving a 2 Na+-HPO2-4 or H2PO-4 co-transport step in the brush-border membrane and a sodium-independent exit step in the basolateral cell membrane. Na+-phosphate co-transport is competitively inhibited by arsenate. The transtubular transport regulation is mirrored by the brush-border transport step: it is inhibited by parathyroid hormone intracellularly mediated by cyclic AMP. Transepithelial inorganic phosphate (Pi) transport and Na+-dependent Pi transport across the brush-border membrane correlates inversely with the Pi content of the diet. Intraluminal acidification as well as intracellular alkalinization led to a reduction of transepithelial Pi transport. Data from brush-border membrane vesicles indicate that high luminal H+ concentrations reduce the affinity for Na+ of the Na+-phosphate co-transport system, and that this mechanism might be responsible for the pH dependence of phosphate reabsorption. Contraluminal influx of Pi from the interstitium into the cell could be partly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS). It is not, however, changed when dicarboxylic acids are present or when the pH of the perfusate is reduced to pH 6. Sulphate is actively reabsorbed, involving electroneutral 2 Na+-SO2-4 co-transport through the brush-border membrane. This transport step is inhibited by thiosulphate and molybdate, but not by phosphate or tungstate. The transtubular active sulphate reabsorption is not pH dependent, but is diminished by the absence of bicarbonate. The transport of sulphate through the contraluminal cell side is inhibited by DIDS and diminished when the capillary perfusate contains no bicarbonate or chloride. The latter data indicate the presence of an anion exchange system in the contraluminal cell membrane like that in the erythrocyte membrane.  相似文献   

6.
We have studied the mechanisms of NaCl transport in the mammalian proximal tubule. Studies of isolated brush-border membrane vesicles confirmed the presence of Na+-H+ exchange and identified Cl(-)-formate and Cl(-)-oxalate exchangers as possible mechanisms of uphill Cl- entry. We found that formate and oxalate each stimulate NaCl absorption in microperfused proximal tubules. Stimulation of NaCl absorption by formate was blocked by the Na+-H+-exchange inhibitor EIPA, whereas stimulation by oxalate was blocked by omission of sulfate from the perfusion solutions. These observations were consistent with recycling of formate from lumen to cell by H+-coupled formate transport in parallel with Na+-H+ exchange and recycling of oxalate by oxalate-sulfate exchange in parallel with Na+-sulfate cotransport. Using isoform-specific antibodies, we found that NHE1 is present on the basolateral membrane of all nephron segments, whereas NHE3 is present on the apical membrane of cells in the proximal tubule and the loop of Henle. The inhibitor sensitivity of Na+-H+ exchange in renal brush-border vesicles and of HCO3- absorption in microperfused tubules suggested that NHE3 is responsible for most, if not all, apical membrane Na+-H+ exchange in the proximal tubule. The role of NHE3 in mediating proximal tubule HCO3- absorption and formate-dependent Cl- absorption was confirmed by studies in NHE3 null mice. Finally, we cloned and functionally expressed CFEX, an anion transporter expressed on the apical surface of proximal tubule cells and capable of mediating Cl(-)-formate exchange.  相似文献   

7.
Renal tubule acidification was studied in thyroparathyroidectomized rats which had the parathyroids reimplanted into cervical muscle tissue, by stopped-flow microperfusion using ion-exchange resin microelectrodes. Hypothyroid rats had decreased rates of proximal and late distal bicarbonate reabsorption. This reduction occurred in the absence of changes in pH gradients, and was due mostly to decreases in acidification half-times, that is, of the rate of bicarbonate exit from the tubule lumen. H+ back-flux from the lumen measured during luminal perfusion with solutions at pH 6 (below stationary pH) was decreased in proximal tubule of hypothyroid rats, showing that the acidification defect was not due to an increased H+ shunt across the epithelium. These data indicate that in hypothyroid rats the proximal tubule luminal density of Na+/H+ exchangers or their turnover is decreased in the absence of alterations in the driving force (H+ and Na+ gradients across the luminal membrane) for H+ secretion. The effect observed in distal tubule may be due to action on Na+/H+ exchangers that are present also on this site, or to an impairment of the action of other H+ transporters such as H+-ATPases, including the provision of energy for them.This paper is dedicated to Prof. Carlos Chagas Filho, founder of the Institute of Biophysics, on the occasion of its 50th anniversary.  相似文献   

8.
9.
On the uptake of biotin by the rat renal tubule   总被引:2,自引:0,他引:2  
Little is known of biotin handling by transporting epithelium. Accordingly, we have examined the characteristics of biotin uptake by rat renal tubular epithelium. Renal cortical slices showed concentrative, temperature-sensitive uptake of biotin. Renal brushborder membrane vesicles exhibited an "overshoot" phenomenon with uptake of 1.9 nM biotin in the presence of a 100 mM NaCl gradient. This overshoot was reduced in magnitude with reduction of the sodium gradient to 50 mM. Biocytin significantly reduced uptake by the vesicles. Concentration-dependent studies yielded an apparent transport Km of 200 nM. We conclude that biotin is actively transported by the rat renal proximal tubule by a system which is at least partially Na+ dependent, and shared by biocytin.  相似文献   

10.
Experimental data suggest the proximal tubule as a major site of neurogenic influence on tubular function. The functional and anatomical axial heterogeneity of the proximal tubule prompted this study of the distribution of innervation sites along the early, mid, and late proximal convoluted tubule (PCT) of the rat. Serial section autoradiograms, with tritiated norepinephrine serving as a marker for monoaminergic nerves, were used in this study. Freehand clay models and graphic reconstructions of proximal tubules permitted a rough estimation of the location of the innervation sites along the PCT. In the subcapsular nephrons, the early PCT (first third) was devoid of innervation sites with most of the innervation occurring in the mid (middle third) and in the late (last third) PCT. Innervation sites were found in the early PCT in nephrons located deeper in the cortex. In juxtamedullary nephrons, innervation sites could be observed on the PCT as it left the glomerulus. This gradient of PCT innervation can be explained by the different tubulovascular relationships of nephrons at different levels of the cortex. The absence of innervation sites in the early PCT of subcapsular nephrons suggests that any influence of the renal nerves on the early PCT might be due to an effect of neurotransmitter released from renal nerves reaching the early PCT via the interstitium and/or capillaries.  相似文献   

11.
Summary The fine structure of the secretory tubules in the kidney of the aglomerular goose-fish (Lophius piscatorius) is described. The cells have a pyramidal shape, are joined together by multiple desmosomes, and share as main characteristics: abundant and deep inflections of the basal and lateral cell membranes; coated luminal plasma membranes forming multiple microvilli or a genuine brush border; moderate numbers of comparatively small mitochondria, usually unassociated with the basal and lateral plasma membrane specializations; numerous multivesicular bodies occuring in the apical cytoplasm; abundant large lysosome-like bodies in the intermediate regions of the cytoplasm; and comparatively poor development of endoplasmic reticulum and Golgi apparatus.The observations suggest that the cells perform both absorptive and secretory functions and are metabolically unusually active in autolytic and heterolytic work. Comparisons with other aglomerular species indicate that the ability for active secretory function is not necessarily dependent on a close association between plasma membrane and mitochondria; however, this ability does appear to require a markedly increased basal and/or lateral cell surface created by multiple invaginations of the plasma membrane. The abundance of desmosomes and associated structures appears to represent a unique structural specialization of the goosefish tubule, and indicates that the cells must be firmly anchored to one another to supply a rigid and mechanically continuous lining of the tubule. The multivesicular bodies probably represent endocytic vacuoles which fuse with apical vesicles and invaginate their outer membrane to form the internal vesicles; they appear to transform to ambilysosomes via a function as heterophagosomes and — later — combined hetero- and autophagosomes.Supported by grants from Karolinska Institutet, Fonden til Videnskabens Fremme and Konsul Johannes Fogh-Nielsen og fru Ella Fogh-Nielsens Légat. Part of the study was performed at the Zoological Station at Naples, Italy. The assistance of Mrs. Britt-Marie Karlsson is gratefully acknowledged.  相似文献   

12.
13.
The transepithelial shunt pathway of newt proximal tubule was examined with glass micro-electrode and electron microscopic methods. The input resistance of the peritubular (basal) membrane and tubular wall were found to be 4.2 ± 0.1 · 106 (mean ± S.E., n = 16) and 11.4 ± 0.2 · 104 (n = 11), respectively. The input resistance of the peritubular membrane was approximately 40-times larger than that of the tubular wall. When the kidneys were perfused in a lanthanum solution, the lanthanum ions were then observed in the junctional complexes and in the intercellular spaces on both the basal and apical sides. The results indicate that the electrical shunt pathway corresponds to the apical junctional complexes and the intercellular spaces, and that the tight junctions are not truly ‘tight’ for the transepithelial movement of small ions in the proximal tubule of the newt kidney.  相似文献   

14.
Heterogeneity of cytosolic pH was studied with compounds that distribute between the cytosol and mitochondrial matrix in fundamentally different ways, i.e., according to the extent of ionization or according to the function of H+-coupled transport systems. Results show that the average cytosolic pH is considerably more alkaline than the region to which mitochondria are exposed. Because mitochondria are localized predominantly in the basal region, the results are consistent with a transcellular pH gradient within the cytosol of proximal tubule cells. Experiments analyzing the effects of inhibiting efflux of HCO3- at the basal surface and Na+-H+ exchange at the apical surface support the interpretation that the function of these systems contributes to the transcellular pH gradient. The existence of a heterogeneity in pH within the cytosol has important implications concerning the function and regulation of numerous cell processes.  相似文献   

15.
16.
Summary Water transport mechanisms in rabbit proximal convoluted cell membranes were examined by measurement of: (1) osmotic (P f ) and diffusional (P d ) water permeabilities, (2) inhibition ofP f by mercurials, and (3) activation energies (E a ) forP f .P f was measured in PCT brush border (BBMV) and basolateral membrane (BLMV) vesicles, and in viable PCT cells by stopped-flow light scattering;P d was measured in PCT cells by proton NMR Ti relaxation times using Mn as a paramagnetic quencher. In BLMV,P f (0.019 cm/sec, 23°C) was inhibited 65% by 5mm pCMBS and 75% by 300 m HgCl2 (K l =42 m);E a increased from 3.6 to 7.6 kcal/mole (15–40°C) with 300 m HgCl2. In BBMV,P f (0.073 cm/sec, 23°C,E a =2.8 kcal/mole, <33°C and 13.7 kcal/mole, >33°C) was inhibited 65% with HgCl2 withE a =9.4 kcal/mole (15–45°C). Mercurial inhibition in BLMV and BBMV was reversed with 10 m mercaptoethanol. Viable PCT cells were isolated from renal cortex by Dounce homogenization and differential seiving. Impedence sizing studies show that PCT cells are perfect osmometers (100–1000 mOsm). Assuming a cell surface-to-volume ratio of 25,000 cm–1,P f was 0.010±0.002 cm/sec (37°C) andP d was 0.0032 cm/sec.P f was independent of osmotic gradient size (25–1000 mOsm) withE a 2.5 kcal/mole (<27°C) and 12.7 kcal/mole (>27°C). CellP f was inhibited 53% by 300 m HgCl2 (23°C) withE a 6.2 kcal/mole. These findings indicate that cellP f is not restricted by extracellular or cytoplasmic unstirred layers and that cellP f is not flow-dependent. The high BLMV and BBMVP f , inhibition by HgCl2, lowE a which increases with inhibition, and the measuredP f /P d >1 in cells in the absence of unstirred layers provide strong evidence for the existence of water channels in proximal tubule brush border and basolateral membranes. These channels are similar to those found in erythrocytes and are likely required for rapid PCT transcellular water flow.  相似文献   

17.
Glycosaminoglycans were isolated from plasma membranes of hepatic and renal tubule cells of guinea pig. Plasmalemma of renal tubule cells contained more total glycosaminoglycans, hyaluronic acid, chondroitin-4 sulfates and chondroitin-6 sulfates, and less dermatan sulfates and heparin sulfates than liver plasma membranes. These glycocalyx components, owing to their polyanionic properties, may have a role in the transport of water, ions, and macromolecules across the cell membrane.  相似文献   

18.
19.
Hypertension affects more than 1.5 billion people worldwide but the precise cause of elevated blood pressure (BP) cannot be determined in most affected individuals. Nonetheless, blockade of the renin-angiotensin system (RAS) lowers BP in the majority of patients with hypertension. Despite its apparent role in hypertension pathogenesis, the key cellular targets of the RAS that control BP have not been clearly identified. Here we demonstrate that RAS actions in the epithelium of the proximal tubule have a critical and nonredundant role in determining the level of BP. Abrogation of AT(1) angiotensin receptor signaling in the proximal tubule alone is sufficient to lower BP, despite intact vascular responses. Elimination of this pathway reduces proximal fluid reabsorption and alters expression of key sodium transporters, modifying pressure-natriuresis and providing substantial protection against hypertension. Thus, effectively targeting epithelial functions of the proximal tubule of the kidney should be a useful therapeutic strategy in hypertension.  相似文献   

20.
In expression systems and in yeast, Na/H exchanger regulatory factor (NHERF)-1 and NHERF-2 have been demonstrated to interact with the renal brush border membrane proteins NHE3 and Npt2. In renal tissue of mice, however, NHERF-1 is required for cAMP regulation of NHE3 and for the apical targeting of Npt2 despite the presence of NHERF-2, suggesting another order of specificity. The present studies examine the subcellular location of NHERF-1 and NHERF-2 and their interactions with target proteins including NHE3, Npt2, and ezrin. The wild-type mouse proximal tubule expresses both NHERF-1 and NHERF-2 in a distinct pattern. NHERF-1 is strongly expressed in microvilli in association with NHE3, Npt2, and ezrin. Although NHERF-2 can be detected weakly in the microvilli, it is expressed predominantly at the base of the microvilli in the vesicle-rich domain. NHERF-2 appears to associate directly with ezrin and NHE3 but not Npt2. NHERF-1 is involved in the apical expression of Npt2 and the presence of other Npt2-binding proteins does not compensate totally for the absence of NHERF-1 in NHERF-1-null mice. Although NHERF-1 links NHE3 to the actin cytoskeleton through ezrin, the absence of NHERF-1 does not result in a generalized disruption of the architecture of the cell. Thus the mistargeting of Npt2 seen in NHERF-1-null mice likely represents a specific disruption of pathways mediated by NHERF-1 to achieve targeting of Npt2. These findings suggest that the organized subcellular distribution of the NHERF isoforms may play a role in the specific interactions mediating physiological control of transporter function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号