首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of fluid motion in renal tubules, in contrast to ordinary flow through cylinders with impermeable walls, is complicated by the existence of radial velocities generated by reabsorption processes. As a first approach to this problem, the Navier Stokes equations for axially symmetric, slow flow in an infinite cylinder whose walls reabsorb fluid are integrated. If the rate of reabsorption is constant, the solutions resemble the conventional Poiseuille flow, i.e., the longitudinal velocity profile is parabolic. In addition the drop in mean pressure is proportional to the mean axial flow, the length of tube between reference points, and inversely proportional to the fourth power of the radius. If the rate of reabsorption is a linear function of the distance from the origin, the presence of an additive term alters these relations. If, for example, the gradient in reabsorption is positive, the axial velocity profile tends to flatten and when the gradient is sufficiently large, the maximum velocity moves from the center of the stream toward the periphery, leaving a relative minimum at the center. In passing from the center of the tube to the walls, the radial velocity passes through a miximum, regardless of the reabsorption properties of the wall.  相似文献   

2.
In order to understand the abnormal flow conditions of blood in a locally constricted blood vessel, the analytical results are obtained for the oscillatory flow of blood which behaves as a Newtonian fluid. It is here assumed that the surface roughness is cosine-shaped and the maximum height of the roughness is very small compared with the radius of the unconstricted tube. Numerical solutions are presented for the instantaneous flow rate, resistive impedance, wall shear stress and phase lag.  相似文献   

3.
Blood and erythrocyte suspensions have non-linear pressure-flow curves and so do not possess a unique Newtonian coefficient of viscosity (or its reciprocal, the fluidity) except in the physically unrealizable limits of infinite flow rate and tube radius. However, three coefficients can be defined which are related mathematically to one another and which converge in these infinite limits. They are first, the apparent fluidity, which is proportional to the slope of the line joining any given point on the pressure-flow curve with the origin; second, the differential fluidity, which is proportional to the slope of the pressureflow curve itself at any given point; and third, the generalized fluidity which is proportional to the ratio of the shear rate to the applied stress across any given cylindrical lamina (taken here at the tube wall) within the tube. These three coefficients, which are related mathematically to one another, have been calculated from measured pressure-flow curves for erythrocyte suspensions in glass tubes, and the differential viscosity has been used to develop a simple flow model in which the shear-dependent viscosity is assumed to arise from “structural changes” in the fluid as the flow rate increases. Although the physical basis of such structural changes is uncertain, it is likely that some sort of axial redistribution of the red cells is of greatest importance at normal, physiological hematocrit values.  相似文献   

4.
P Chaturani  R P Samy 《Biorheology》1986,23(5):499-511
The effects of non-Newtonian nature of blood and pulsatility on flow through a stenosed tube have been investigated. A perturbation method is used to analyse the flow. It is of interest to note that the thickness of the viscous flow region is non-uniform (changing with axial distance). An analytic relation between viscous flow region thickness and red cell concentration has been obtained. It is important to mention that some researchers have obtained an approximate solution for the flow rate-pressure gradient equation (assuming the ratio between the yield stress and the wall shear to be very small in comparison to unity); in the present analysis, we have obtained an exact solution for this non-linear equation without making that assumption. The approximate and exact solutions compare well with one of the exact solutions. Another important result is that the mean and steady flow rates decrease as the yield stress theta increases. For the low values of the yield stress, the mean flow rate is higher than the steady flow rate, but for high values of the yield stress, the mean flow rate behaviour is of opposite nature. The critical value of the yield stress at which the flow rate behaviour changes from one type to another has been determined. Further, it seems that there exists a value of the yield stress at which flow stops for both the flows (steady and pulsatile). It is observed that the flow stop yield value for pulsatile flow is lower than the steady flow. The most notable result of pulsatility is the phase lag between the pressure gradient and flow rate, which is further influenced by the yield stress and stenosis. Another important result of pulsatility is the mean resistance to flow is greater than its steady flow value, whereas the mean value of the wall shear for pulsatile flow is equal to steady wall shear. Many standard results regarding Casson and Newtonian fluids flow, uniform tube flow and steady flow can be obtained as the special cases of the present analysis. Finally, some applications of this theoretical analysis have been cited.  相似文献   

5.
The flow through a curved tube model of a coronary artery was investigated computationally to determine the importance of time-varying curvature on flow patterns that have been associated with the development of atherosclerosis. The entry to the tube was fixed while the radius of curvature varied sinusoidally in time at a frequency of 1 or 5 Hz. Angiographic data from other studies suggest that the radius of curvature waveform contains significant spectral content up to 6 Hz. The overall flow patterns were similar to those observed in stationary curved tubes; velocity profile skewed toward the outer wall, secondary flow patterns, etc. The effects of time-varying curvature on the changes in wall shear rate were expressed by normalizing the wall shear rate amplitude with the shear rate calculated at the static mean radius of curvature. It was found that the wall shear rate varied as much as 94 percent of the mean wall shear rate at the mid wall of curvature for a mean curvature ratio of 0.08 and a 50 percent change in radius of curvature. The effects of 5 Hz deformation were not well predicted by a quasi-static approach. The maximum values of the normalized inner wall shear rate amplitude were found to scale well with a dimensionless parameter equivalent to the product of the mean curvature ratio (delta), normalized change in radius of curvature (epsilon), and a Womersley parameter (alpha). This parameter was less successful at predicting the amplitudes elsewhere in the tube, thus additional studies are necessary. The mean wall shear rate was well predicted with a static geometry. These results indicate that dynamic curvature plays an important role in determining the inner wall shear rates in coronary arteries that are subjected to deformation levels of epsilon delta alpha > 0.05. The effects were not always predictable with a quasi-static approach. These results provide guidelines for constructing more realistic models of coronary artery flow for atherogenesis research.  相似文献   

6.
The effects of polar nature of blood and pulsatility on flow through a stenosed tube have been analysed by assuming blood as a micropolar fluid. Linearized solutions of basic equations are obtained through consecutive applications of finite Hankel and Laplace transforms. The analytical expressions for axial and particle angular velocities, wall shear stress, resistance to flow and apparent viscosity have been obtained. The axial velocity profiles for Newtonian and micropolar fluids have been compared. The interesting observation of this analysis is velocity, in certain parts of cycle, for micropolar fluid is higher than Newtonain fluid. Variation of apparent viscosity eta a with tube radius shows both inverse Fahraeus-Lindqvist and Fahraeus-Lindqvist effects. Finally, the resistance to flow and wall shear stress for normal and diseased blood have been computed and compared.  相似文献   

7.
The paper presents a theoretical analysis of elastic expulsion from a long pressurized tube following instantaneous severance. The governing equations of motion and continuity are used, together with an equation representing radial equilibrium of the tube wall, to construct a differential equation for the inner radius of the tube as a function of axial position and time. Similarity solutions for this equation are presented for a Newtonian fluid. The effect of the relaxed/fully-extended radius ratio on wall dilatation and expulsion rate is discussed.  相似文献   

8.

Background

This study shows that the arterial longitudinal impedance constitutes a hemodynamic parameter of interest for performance characterization of large arteries in normal condition as well as in pathological situations. For this purpose, we solved the Navier?CStokes equations for an incompressible flow using the finite element analysis method and the Arbitrary Lagrangian Eulerian (ALE) formulation. The mathematical model assumes a two-dimensional flow and takes into account the nonlinear terms in the equations of fluid motion that express the convective acceleration, as well as the nonlinear deformation of the arterial wall. Several numerical simulations of the blood flow in large vessels have been performed to study the propagation along an arterial vessel of a pressure gradient pulse and a rate flow pulse. These simulations include various deformations of the wall artery leading to parietal displacements ranging from 0 (rigid wall) to 15% (very elastic wall) in order to consider physiological and pathological cases.

Results

The results show significant changes of the rate flow and the pressure gradient wave as a function of aosc, the relative variation in the radius of the artery over a cardiac cycle. These changes are notable beyond a critical value of aosc equal to 0.05. This critical value is also found in the evolution of the longitudinal impedance. So, above a variation of radius of 5%, the convective acceleration, created by the fluid-wall interactions, have an influence on the flow detectable on the longitudinal impedance.

Conclusions

The interpretation of the evolution of the longitudinal impedance shows that it could be a mean to test the performance of large arteries and can contribute to the diagnosis of parietal lesions of large arteries. For a blood vessel with a wall displacement higher than 5% similar to those of large arteries like the aorta, the longitudinal impedance is substantially greater than that obtained in the absence of wall displacement. This study also explains the effects of convective acceleration, on the shape of the decline of the pressure gradient wave and shows that they should not be neglected when the variation in radius is greater than 5%.  相似文献   

9.
A simplified model for cilia-induced flows in tubules is presented. Each cilium is a long slender body which is constrained to move similar to its beat. An array of cilia is defined and coordinated in such a way as to represent the metachronal wave. The velocity field is represented by a distribution of viscous fluid singularities (Stokes flow) along the centerline of each slender body. The total mean velocity field due to all the cilia is obtained. It is found that backflow (reflux) can occur near the walls for cilia exhibiting antiplectic metachronism. Maximum flow rates are obtained for cilia whose length is 0.3 to 0.6 the radius of the tube.  相似文献   

10.
Creeping flow of a Newtonian fluid through a rigid permeable tube is considered and the transmural seepage is assumed to obey Darcy's law. Closed-form solutions for the pressure and velocity fields are presented and equations describing the axial variation of the mean cross-sectional pressure, the axial volumetric flow and the transmural fluid flux are derived. Approximate solutions for small seepage rates are given and are applied to the flow in the proximal renal tubule. Probable values for the epithelium permeability and the intraluminal hydrostatic pressure drop are obtained.  相似文献   

11.
To have a better understanding of the flow of blood in arteries a theoretical analysis of the pressure wave propagation through a viscous incompressible fluid contained in an initially stressed tube is considered. The fluid is assumed to be Newtonian. The tube is taken to be elastic and isotropic. The analysis is restricted to tubes with thin walls and to waves whose wavelengths are very large compared with the radius of the tube. It is further assumed that the amplitude of the pressure disturbance is sufficiently small so that nonlinear terms of the inertia of the fluid are negligible compared with linear ones. Both circumferential and longitudinal initial stresses are considered; however, their origins are not specified. Initial stresses enter equations as independent parameters. A frequency equation, which is quadratic in the square of the propagation velocity is obtained. Two out of four roots of this equation give the velocity of propagation of two distinct outgoing waves. The remaining two roots represent incoming waves corresponding to the first two waves. One of the waves propagates more slowly than the other. As the circumferential and/or longitudinal stress of the wall increases, the velocity of propagation and transmission per wavelength of the slower wave decreases. The response of the fast wave to a change in the initial stress is on the opposite direction.  相似文献   

12.
13.
Numerical simulations of flow in straight elastic (moving wall) tubes subjected to a sinusoidal pressure gradient were performed for conditions prevailing in large and medium sized arteries. The effects of varying the phase angle between the pressure gradient and the tube radius, the amplitude of wall motion, and the unsteadiness parameter (alpha) on flow rate and wall shear stress were investigated. Mean and peak flow rates and shear stresses were found to be strongly affected by the phase angle between the pressure gradient and the tube radius with greater sensitivity at higher diameter variation and higher alpha. In large artery simulations (alpha = 12), means flow rate was found to be 60% higher and peak flow rate to be 73% higher than corresponding rigid tube values for certain phase angles, while a threefold increase in mean wall shear stress and sevenfold increase in peak wall shear stress were observed in a sensitive phase angle range. Significant reversal in the wall shear stress direction occurred in the sensitive phase angle range even when there was negligible flow rate reversal. All effects were greatly diminished in simulations of medium sized vessels (alpha = 4). Some experimental evidence to support the predictions of a strong effect of phase angle on wall shear stress in large vessels is presented. Finally, physiological implications of the present work are discussed from a basis of aortic input impedance data, and a physical explanation for the extreme sensitivity of the flow field to small amplitude wall motion at high alpha is given.  相似文献   

14.
The effect of pulsatile flow on peristaltic transport in a circular cylindrical tube is analysed. The flow of a Newtonian viscous incompressible fluid in a flexible circular cylindrical tube on which an axisymmetric travelling sinusoidal wave is imposed, is considered. The initial flow in the tube is induced by an arbitrary periodic pressure gradient. A perturbation solution with amplitude ratio (wave amplitude/tube radius) as a parameter is obtained when the frequency of the travelling wave and that of the imposed pressure gradient are equal. The interaction effects of periodic wall induced flow and periodic pressure imposed flow are visualized through the presence of substantially different components of steady and higher harmonic oscillating flow in the first order flow solution. Numerical results show a strong variation of steady state velocity profiles with boundary wave number and Reynolds number and a strong phase shift behaviour of the flow in the radial direction.  相似文献   

15.
There are several mechanisms potentially involved in the breakdown of steady fluid flow in a collapsible tube under external pressure. Here we investigate one that has received little attention in the past: the fact that the longitudinal tension in the tube wall, T, decreases with distance downstream as a consequence of the viscous shear stress exerted by the fluid. If the tube is long enough, or the initial tension small enough, T may fall to zero before the end of the collapsible tube, and unsteady motion would presumably then ensue; this is what we mean by "breakdown." We study the phenomenon theoretically, when the flow Reynolds number is of order one, using lubrication theory in a symmetric two-dimensional channel in which the collapsible tube is replaced by membranes occupying a segment of each wall. The resulting nonlinear ordinary differential equations are solved numerically for values of the dimensionless parameters that cover all the qualitatively different types of solution (e.g., in which the channel is distended over all its length, collapsed over all its length, or distended in the upstream part and collapsed downstream). Reducing the longitudinal tension has a marked effect on the shape of the collapsible segment, causing it to become much more deformed for the same flow rate and external pressure. Indeed, the wall slope is predicted to become very large when the downstream tension is very small, so the model is not self-consistent then. Nevertheless, the parameter values for which T becomes zero are mapped out and are expected to be qualitatively useful.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Trachea is the unique passage for air to flow in and out. Its tone is of importance for the respiration system. However, investigation on how tracheal tone changes due to asthma is limited. Aiming at studying how the mechanical property changes due to asthma as well as the compliance and flow limitation, the following methods are adopted. Static and passive pressure-volume tests of rats' trachea of the asthmatic and control groups are carried out and a new type of tube law is formulated to fit the experimental data, based on which changes of compliance and limit flow rate are investigated. In order to give explanation to such changes, histological examinations with tracheal soft tissues are made. The results show that compliance, limit flow rate and material constants included in the tube law largely depend on the longitudinal stretching ratio. Compared with the control group, the tracheal compliance of asthmatic animals decreases significantly, which results in an increased limit flow rate. Histological studies indicate that asthma can lead to hyperplasia/hypertrophy of smooth muscle cells, and increase elastin and collagen fibres in the muscular membrane. Though decreasing compliance increases sta- bility, during the onset of asthma, limit flow rate is much smaller due to the lower transmural pressure. Asthma leads to a stiffer trachea and the obtained results reveal some aspects relevant to asthma-induced tracheal remodelling.  相似文献   

17.
The hydrodynamical problem of flow in proximal renal tubule is investigated by considering axisymmetric flow of a viscous, incompressible fluid through a long narrow tube of varying cross-section with reabsorption at the wall. Two cases for reabsorption have been studied (i) when the bulk flow,Q, decays exponentially with the axial distancex, and (ii) whenQ is an arbitrary function ofx such thatQ-Q 0 can be expressed as a Fourier integral (whereQ 0 is the flux atx=0). The analytic expressions for flow variables have been obtained by applying perturbation method in terms of wall parameter ε. The effects of ε on pressure drop across the tube, radial velocity and wall shear have been studied in the case of exponentially decaying bulk flow and it has been found that the results are in agreement with the existing ones for the renal tubules.  相似文献   

18.
A one-dimensional inviscid solution for flow through a compliant tube with a stenosis is presented. The model is used to represent an artery with an atherosclerotic plaque and to investigate a range of conditions for which arterial collapse may occur. The coupled equations for flow through collapsible tubes are solved using a Runge-Kutta finite difference scheme. Quantitative results are given for specific physiological parameters including inlet and outlet pressure, flow rate, stenosis size, length and stiffness. The results suggest that high-grade stenotic arteries may exhibit collapse with typical physiological pressures. Critical stenoses may cause choking of flow at the throat followed by a transition to supercritical flow with tube collapse downstream. Greater amounts of stenosis produced a linear reduction of flow rate and a shortening of the collapsed region. Changes in stenosis length created proportional changes in the length of collapse. Increasing the stiffness of the stenosis to a value greater than the nominal tube stiffness caused a greater amount of flow limitation and more negative pressures, compared to a stenosis with constant stiffness. These findings assist in understanding the clinical consequences of flow through atherosclerotic arteries.  相似文献   

19.
A nonobstructing optical method was developed to measure proximal tubular fluid reabsorption in rat nephron at 0.25 Hz. The effects of uncaging luminal nitric oxide (NO) on proximal tubular reabsorption were investigated with this method. Proximal fluid reabsorption rate was calculated as the difference of tubular flow measured simultaneously at two locations (0.8-1.8 mm apart) along a convoluted proximal tubule. Tubular flow was estimated on the basis of the propagating velocity of fluorescent dextran pulses in the lumen. Changes in local tubular flow induced by intratubular perfusion were detected simultaneously along the proximal tubule, indicating that local tubular flow can be monitored in multiple sites along a tubule. The estimated tubular reabsorption rate was 5.52 +/- 0.38 nl.min(-1).mm(-1) (n = 20). Flash photolysis of luminal caged NO (potassium nitrosylpentachlororuthenate) was induced with a 30-Hz UV nitrogen-pulsed laser. Release of NO from caged NO into the proximal tubule was confirmed by monitoring intracellular NO concentration using a cell-permeant NO-sensitive fluorescent dye (DAF-FM). Emission of DAF-FM was proportional to the number of laser pulses used for uncaging. Photolysis of luminal caged NO induced a dose-dependent inhibition of proximal tubular reabsorption without activating tubuloglomerular feedback, whereas uncaging of intracellular cGMP in the proximal tubule decreased tubular flow. Coupling of this novel method to measure reabsorption with photolysis of caged signaling molecules provides a new paradigm to study tubular reabsorption with ambient tubular flow.  相似文献   

20.
The problem of pressure wave propagation through a viscous fluid contained in an orthotropic elastic tube is considered in connection with arterial blood flow. Solutions to the fluid flow and elasticity equations are obtained for the presence of a reflected wave. Numerical results are presented for both isotropic and orthotropic elastic tubes. In particular, the pressure pulse, flow rate, axial fluid velocity, and wall displacements are plotted vs. time at various stations along the ascending aorta of man. The results indicate an increase in the peak value of the pressure pulse and a decrease in the flow rate as the pulse propagates away from the heart. Finally, the velocity of wave propagation depends mainly on the tangential modulus of elasticity of the arterial wall, and anisotropy of the wall accounts in part for the reduction of longitudinal movements and an increase in the hydraulic resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号