首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The original definition of aerobic dive limit (ADL) was the dive duration after which there is an increase in post-dive concentration of lactate in the blood of Weddell seals freely diving in the field. The only other species in which such measurements have been made is the emperor penguin. For all other species, aerobic dive limit has been calculated (cADL) by dividing usable oxygen stores with an estimation of the rate of oxygen consumption during diving. Unfortunately, cADL is often referred to as the aerobic dive limit, implying that it is equivalent to that determined from the measurement of post-dive blood lactate concentration. However, this is not so, as at cADL all of the usable oxygen would have been consumed, whereas Weddell seals and emperor penguins can dive for at least 2-3 times longer than their ADL. Thus, at ADL, there is still some usable oxygen remaining in the stores. It is suggested that to avoid continued confusion between these two terms, the former is called diving lactate threshold (DLT), as it is somewhat analogous to the lactate threshold in exercising terrestrial vertebrates. Possible explanations of how some species routinely dive beyond their cADL are also discussed.  相似文献   

2.
The relationship between population structure and demographic history is critical to understanding microevolution and for predicting the resilience of species to environmental change. Using mitochondrial DNA from extant colonies and radiocarbon‐dated subfossils, we present the first microevolutionary analysis of emperor penguins (Aptenodytes forsteri) and show their population trends throughout the last glacial maximum (LGM, 19.5–16 kya) and during the subsequent period of warming and sea ice retreat. We found evidence for three mitochondrial clades within emperor penguins, suggesting that they were isolated within three glacial refugia during the LGM. One of these clades has remained largely isolated within the Ross Sea, while the two other clades have intermixed around the coast of Antarctica from Adélie Land to the Weddell Sea. The differentiation of the Ross Sea population has been preserved despite rapid population growth and opportunities for migration. Low effective population sizes during the LGM, followed by a rapid expansion around the beginning of the Holocene, suggest that an optimum set of sea ice conditions exist for emperor penguins, corresponding to available foraging area.  相似文献   

3.
Leopard seals are regular winter visitors to Bird Island, South Georgia, where they mostly prey on fur seals and penguins, and to a lesser extent on Antarctic krill and fish. Leopard seals can exploit many different species, but there are no records of predation on flying shorebirds in the wild. On 4 October 2008, an individually identified juvenile leopard seal female was observed killing and eating a South Georgia Pintail duck. It also preyed on Antarctic fur seals and gentoo and macaroni penguins during its 2-month temporary residency around the island. The varied diet of this seal exemplifies the generalist prey utilization typical of its species. Long-term diet studies at Bird Island and the published record suggest that predation on ducks is a rather exceptional finding; individual ducks are more likely to escape leopard seal attacks than penguins and provide a far less substantial ration. This note documents the first observation of this species of duck in the diet of leopard seals.  相似文献   

4.
Early‐life demographic traits are poorly known, impeding our understanding of population processes and sensitivity to climate change. Survival of immature individuals is a critical component of population dynamics and recruitment in particular. However, obtaining reliable estimates of juvenile survival (i.e., from independence to first year) remains challenging, as immatures are often difficult to observe and to monitor individually in the field. This is particularly acute for seabirds, in which juveniles stay at sea and remain undetectable for several years. In this work, we developed a Bayesian integrated population model to estimate the juvenile survival of emperor penguins (Aptenodytes forsteri), and other demographic parameters including adult survival and fecundity of the species. Using this statistical method, we simultaneously analyzed capture–recapture data of adults, the annual number of breeding females, and the number of fledglings of emperor penguins collected at Dumont d'Urville, Antarctica, for the period 1971–1998. We also assessed how climate covariates known to affect the species foraging habitats and prey [southern annular mode (SAM), sea ice concentration (SIC)] affect juvenile survival. Our analyses revealed that there was a strong evidence for the positive effect of SAM during the rearing period (SAMR) on juvenile survival. Our findings suggest that this large‐scale climate index affects juvenile emperor penguins body condition and survival through its influence on wind patterns, fast ice extent, and distance to open water. Estimating the influence of environmental covariates on juvenile survival is of major importance to understand the impacts of climate variability and change on the population dynamics of emperor penguins and seabirds in general and to make robust predictions on the impact of climate change on marine predators.  相似文献   

5.
The analysis of prey overlap among Weddell, Antarctic fur and leopard seals was conducted using fecal samples collected at the Danco Coast, Antarctic Peninsula, in 1998 and 2000. The re-occurrence of prey species was moderate in samples collected in 1998, and low in 2000, and reflects resource partitioning among seal species. Prey species that mostly co-occurred in seals’ diet were the Antarctic krill Euphausia superba, bivalves, and the myctophids Gymnoscopelus nicholsi and Electrona antarctica. A dietary similarity index of prey overlap has been calculated and demonstrates evident fluctuations in pairwise comparisons between the seal species. The highest and lowest values of prey overlap were observed between Antarctic fur seals and leopard seals, and between Weddell seals and leopard seals, respectively. Prey overlap between Antarctic fur seals and Weddell seals was moderate in both seasons.  相似文献   

6.
The Austral autumn–winter is a critical period for capital breeders such as Weddell seals that must optimize resource acquisition and storage to provision breeding in the subsequent spring. However, how Weddell seals find food in the winter months remains poorly documented. We equipped adult Weddell seals after their annual molt with satellite‐relayed data loggers at two sites in East Antarctica: Dumont D'Urville (n = 12, DDU) and Davis (n = 20). We used binomial generalized mixed‐effect models to investigate Weddell seals’ behavioral response (i.e., “hunting” vs. “transit”) to physical aspects of their environment (e.g., ice concentration). Weddell seal foraging was concentrated to within 5 km of a breathing hole, and they appear to move between holes as local food is depleted. There were regional differences in behavior so that seals at Davis traveled greater distances (three times more) and spent less time in hunting mode (half the time) than seals at DDU. Despite these differences, hunting dives at both locations were pelagic, concentrated in areas of high ice concentration, and over areas of complex bathymetry. There was also a seasonal change in diving behavior from transiting early in the season to more hunting during winter. Our observations suggest that Weddell seal foraging behavior is plastic and that they respond behaviorally to changes in their environment to maximize food acquisition and storage. Such plasticity is a hallmark of animals that live in very dynamic environments such as the high Antarctic where resources are unpredictable.  相似文献   

7.
The Ross Sea, a large, high-latitude (72–78°S) embayment of the Antarctic continental shelf, averages 500 m deep, with troughs to 1,200 m and the shelf break at 700 m. It is covered by pack ice for 9 months of the year. The fish fauna of about 80 species includes primarily 4 families and 53 species of the endemic perciform suborder Notothenioidei. This review focuses on the diet and role in the food web of notothenioids and top-level bird and mammal predators, and also includes new information on the diets of artedidraconids and bathydraconids. Although principally a benthic group, notothenioids have diversified to form an adaptive radiation that includes pelagic and semipelagic species. In the southern Ross Sea, notothenioids dominate the fish fauna at levels of abundance and biomass >90% and are, therefore, inordinately important in the food web. Antarctic krill (Euphausia superba) and mesopelagic fishes are virtually absent from the shelf waters of the Ross Sea. Of the four notothenioid families, nototheniids show the most ecological and dietary diversification, with pelagic, cryopelagic, epibenthic and benthic species. Neutrally buoyant Pleuragramma antarcticum constitutes >90% of both the abundance and biomass of the midwater fish fauna. Most benthic nototheniids are opportunistic and feed on seasonally or locally abundant zooplanktonic prey. Artedidraconids are benthic sit-and-wait predators. Larger bathydraconids are benthic predators on fish while smaller species feed mainly on benthic crustaceans. Channichthyids are less dependent on the bottom for food than other notothenioids. Some species combine benthic and pelagic life styles; others are predominantly pelagic and all consume euphausiids and/or fish. South polar skuas, Antarctic petrels, Adélie and emperor penguins, Weddell seals and minke and killer whales are the higher vertebrate components of the food web, and all prey on notothenioids to some extent. Based on the frequency of occurrence of prey items in the stomachs of fish, bird and mammal predators, P. antarcticum and ice krill E. crystallorophias are the key species in the food web of the Ross Sea. P. antarcticum is a component of the diet of at least 11 species of nototheniid, bathydraconid and channichthyid fish and, at frequencies of occurrence from 71 to 100%, is especially important for Dissostichus mawsoni, Gvozdarus svetovidovi and some channichthyids. At least 16 species of notothenioids serve as prey for bird and mammal predators, but P. antarcticum is the most important and is a major component of the diet of south polar skua, Adélie and emperor penguins and Weddell seals, at frequencies of occurrence from 26 to 100%. E. crystallorophias is consumed by some nototheniid and channichthyid fish and can be of importance in the diet of emperor and Adélie penguins, although in the latter case, this is dependent on location and time of year.Unlike the linear phytoplanktonE. superbaconsumers of the E. superba food chain hypothesized for much of the Southern Ocean, the food web of the Ross Sea shelf is non-linear, with complex prey-predator interactions. Notothenioid fish play a key role: as predators, they occupy most of the trophic niches available in the ecosystem, relying on benthic, zooplanktonic and nektonic organisms; as prey, they are important food resources for each other and for most top predators living and foraging on the shelf. They also constitute the major link between lower (invertebrates) and higher (birds and mammals) levels of the food web. This is especially true for P. antarcticum. Along with E. crystallorophias, its ecological role in the Ross Sea is equivalent to that of myctophids and E. superba elsewhere in the Southern Ocean.  相似文献   

8.
Understanding the boundaries of breeding populations is of great importance for conservation efforts and estimates of extinction risk for threatened species. However, determining these boundaries can be difficult when population structure is subtle. Emperor penguins are highly reliant on sea ice, and some populations may be in jeopardy as climate change alters sea‐ice extent and quality. An understanding of emperor penguin population structure is therefore urgently needed. Two previous studies have differed in their conclusions, particularly whether the Ross Sea, a major stronghold for the species, is isolated or not. We assessed emperor penguin population structure using 4,596 genome‐wide single nucleotide polymorphisms (SNPs), characterized in 110 individuals (10–16 per colony) from eight colonies around Antarctica. In contrast to a previous conclusion that emperor penguins are panmictic around the entire continent, we find that emperor penguins comprise at least four metapopulations, and that the Ross Sea is clearly a distinct metapopulation. Using larger sample sizes and a thorough assessment of the limitations of different analytical methods, we have shown that population structure within emperor penguins does exist and argue that its recognition is vital for the effective conservation of the species. We discuss the many difficulties that molecular ecologists and managers face in the detection and interpretation of subtle population structure using large SNP data sets, and argue that subtle structure should be taken into account when determining management strategies for threatened species, until accurate estimates of demographic connectivity among populations can be made.  相似文献   

9.
Satellite telemetry data are a key source of animal distribution information for marine ecosystem management and conservation activities. We used two decades of telemetry data from the East Antarctic sector of the Southern Ocean. Habitat utilization models for the spring/summer period were developed for six highly abundant, wide‐ranging meso‐ and top‐predator species: Adélie Pygoscelis adeliae and emperor Aptenodytes forsteri penguins, light‐mantled albatross Phoebetria palpebrata, Antarctic fur seals Arctocephalus gazella, southern elephant seals Mirounga leonina, and Weddell seals Leptonychotes weddellii. The regional predictions from these models were combined to identify areas utilized by multiple species, and therefore likely to be of particular ecological significance. These areas were distributed across the longitudinal breadth of the East Antarctic sector, and were characterized by proximity to breeding colonies, both on the Antarctic continent and on subantarctic islands to the north, and by sea‐ice dynamics, particularly locations of winter polynyas. These areas of important habitat were also congruent with many of the areas reported to be showing the strongest regional trends in sea ice seasonality. The results emphasize the importance of on‐shore and sea‐ice processes to Antarctic marine ecosystems. Our study provides ocean‐basin‐scale predictions of predator habitat utilization, an assessment of contemporary habitat use against which future changes can be assessed, and is of direct relevance to current conservation planning and spatial management efforts.  相似文献   

10.
The diet of emperor penguins Aptenodytes forsteri was studied during late austral summer at Drescher Inlet, eastern Weddell Sea, Antarctica. Antarctic krill Euphausia superba was a major component of the food, accounting for 75% of all prey items. Emperor penguins appear to feed on krill during shallow dives under the fast sea ice. Fish, mainly nototheniids, accounted for less than 20% by number of all prey. An evaluation of the main prey types in terms of mass indicated, however, that fish represented up to 75% approximately of prey mass. Feeding experiments were performed on captive penguins and showed that squid beaks can accumulate for up to 3 weeks within the stomach without any clear signs of erosion. The lack of cephalopod soft parts in the samples makes it likely that all squid beaks were derived from animals captured some time previously. Squid seems to be a very minor dietary component of emperor penguins at the Drescher Inlet.  相似文献   

11.
The focus of this study was the distribution of adult female Weddell seals during winter at the Vestfold Hills. Satellite tracking of Weddell seals had never been done before at this location. Hence, this was a pilot study to evaluate the following methods. We attached satellite transmitters to the lower back, where there was least potential to change the seals’ behaviour or to damage instruments on the ice. Location data were obtained only where the seals hauled out, not necessarily where they were feeding. All locations were within the area of fast-ice that was associated with the Vestfold Hills. There were gaps of up to 30 days in the location data sets. Each instrument (n=3) remained attached and functioning for ca. 6 months. During that time, two of the three seals hauled out within small areas adjacent to, or nearby, open water. The same seals hauled out sporadically. We inferred that these seals foraged offshore whilst returning to fast-ice to rest. If Weddell seals forage beneath dynamic ice but return to stable ice as their preferred resting substrate, then evidence of haulout sites will always be a biased measure of foraging range. Tracking seals in the water may be possible using alternative placement of transmitters. However, there is potential for instruments to interfere with movement (breathing and prey capture). For this reason, we recommend a combination of sensors, diet and tracking haulout sites to research winter foraging.  相似文献   

12.
Biuw M  Nøst OA  Stien A  Zhou Q  Lydersen C  Kovacs KM 《PloS one》2010,5(11):e13816
Weddell Sea hydrography and circulation is driven by influx of Circumpolar Deep Water (CDW) from the Antarctic Circumpolar Current (ACC) at its eastern margin. Entrainment and upwelling of this high-nutrient, oxygen-depleted water mass within the Weddell Gyre also supports the mesopelagic ecosystem within the gyre and the rich benthic community along the Antarctic shelf. We used Conductivity-Temperature-Depth Satellite Relay Data Loggers (CTD-SRDLs) to examine the importance of hydrographic variability, ice cover and season on the movements and diving behavior of southern elephant seals in the eastern Weddell Sea region during their overwinter feeding trips from Bouvetøya. We developed a model describing diving depth as a function of local time of day to account for diel variation in diving behavior. Seals feeding in pelagic ice-free waters during the summer months displayed clear diel variation, with daytime dives reaching 500-1500 m and night-time targeting of the subsurface temperature and salinity maxima characteristic of CDW around 150–300 meters. This pattern was especially clear in the Weddell Cold and Warm Regimes within the gyre, occurred in the ACC, but was absent at the Dronning Maud Land shelf region where seals fed benthically. Diel variation was almost absent in pelagic feeding areas covered by winter sea ice, where seals targeted deep layers around 500–700 meters. Thus, elephant seals appear to switch between feeding strategies when moving between oceanic regimes or in response to seasonal environmental conditions. While they are on the shelf, they exploit the locally-rich benthic ecosystem, while diel patterns in pelagic waters in summer are probably a response to strong vertical migration patterns within the copepod-based pelagic food web. Behavioral flexibility that permits such switching between different feeding strategies may have important consequences regarding the potential for southern elephant seals to adapt to variability or systematic changes in their environment resulting from climate change.  相似文献   

13.
As part of a monitoring study of Adélie and Gentoo penguin colonies, birds occupying nests with eggs and chicks in crèches were counted annually from the 1995/1996 to the 2006/2007 seasons at Stranger Point, Isla 25 de Mayo (King George Island), Antarctica. During the study period the Adélie penguin population showed a decrease of 62%. The number of chicks in crèches followed a similar trend, the smallest number occurring in 2002, when it was 63% lower than in 1995/1996. In contrast, the Gentoo breeding population size increased by 68%, while chicks produced increased by 63%. Despite the opposing trends in population size between species, there was a positive relation in their interannual variation, although the extent, and for some years the direction, of the change observed always favoured Gentoo penguins. Breeding success (chicks in crèches/nests with eggs) fluctuated between 0.65 and 1.26 for Adélies and between 0.76 and 1.27 for Gentoo penguins, and did not differ significantly between species. The similar breeding success of these species suggests that the contrasting population trends observed were driven by factors operating over winter. We suggest that current changes in environmental conditions may affect adult birds of both species during the previous winter with different intensity but in a roughly similar way, but that juvenile survival of both species and thus the recruitment of new breeders might be affected differentially, with a much lower survival rate of juvenile Adélie penguins.  相似文献   

14.
The consequences of warming for Antarctic long‐lived organisms depend on their ability to survive changing patterns of climate and environmental variation. Among birds and mammals of different Antarctic regions, including emperor penguins, snow petrels, southern fulmars, Antarctic fur seals and Weddell seals, we found strong support for selection of life history traits that reduce interannual variation in fitness. These species maximize fitness by keeping a low interannual variance in the survival of adults and in their propensity to breed annually, which are the vital rates that influence most the variability in population growth rate (λ). All these species have been able to buffer these rates against the effects of recent climate‐driven habitat changes except for Antarctic fur seals, in the Southwest Atlantic. In this region of the Southern Ocean, the rapid increase in ecosystem fluctuation, associated with increasing climate variability observed since 1990, has limited and rendered less predictable the main fur seal food supply, Antarctic krill. This has increased the fitness costs of breeding for females, causing significant short‐term changes in population structure through mortality and low breeding output. Changes occur now with a frequency higher than the mean female fur seal generation time, and therefore are likely to limit their adaptive response. Fur seals are more likely to rely on phenotypic plasticity to cope with short‐term changes in order to maximize individual fitness. With more frequent extreme climatic events driving more frequent ecosystem fluctuation, the repercussions for life histories in many Antarctic birds and mammals are likely to increase, particularly at regional scales. In species with less flexible life histories that are more constrained by fluctuation in their critical habitats, like sea‐ice, this may cause demographic changes, population compensation and changes in distribution, as already observed in penguin species living in the Antarctic Peninsula and adjacent islands.  相似文献   

15.
The population dynamics of Antarctic seabirds are influenced by variations in winter sea ice extent and persistence; however, the type of relationship differs according to the region and the demographic parameter considered. We used annual presence/absence data obtained from 1,138 individually marked birds to study the influence of environmental and individual characteristics on the survival of Adélie penguins Pygoscelis adeliae at Edmonson Point (Ross Sea, Antarctica) between 1994 and 2005. About 25% of 600 birds marked as chicks were reobserved at the natal colony. The capture and survival rates of Adélie penguins at this colony increased with the age of individuals, and five age classes were identified for both parameters. Mean adult survival was 0.85 (SE = 0.01), and no effect of sex on survival was evident. Breeding propensity, as measured by adult capture rates, was close to one, indicating a constant breeding effort through time. Temporal variations in survival were best explained by a quadratic relationship with winter sea ice extent anomalies in the Ross Sea, suggesting that for this region optimal conditions are intermediate between too much and too little winter sea ice. This is likely the result of a balance between suitable wintering habitat and food availability. Survival rates were not correlated with the Southern Oscillation Index. Low adult survival after a season characterized by severe environmental conditions at breeding but favorable conditions during winter suggested an additional mortality mediated by the reproductive effort. Adélie penguins are sensitive indicators of environmental changes in the Antarctic, and the results from this study provide insights into regional responses of this species to variability in winter sea ice habitat.  相似文献   

16.
Summary Stomach and intestine samples from 21 adult Weddell seals were used to study the diet of these seals from the eastern and southern Weddell Sea coast from January to February 1983 and 1985. Fish occurred in all seals, squid in five, octopods in three and Euphausia crystallorophias in one seal. Pleuragramma antarcticum was the predominant fish in the diet, constituting 61.1% of otoliths in 1983 samples and 93.8% in 1985. Aethotaxis mitopteryx, Dissostichus mawsoni, unidentified Trematomus spp. and channichthyids were also recorded. Size and wet weight of P. antarcticum were calculated from uneroded otoliths, found in 6 seal stomachs with liquid food pulp, collected during early morning hours in 1985. Size distribution of P. antarcticum from individual seals was reasonably constant, ranging between 5.0 and 22.0 cm SL; adult fish from about 14.0 to 19.0 cm SL predominated. P. antarcticum in seals from the southern area had a larger median size (16.5 cm SL), than those from further east (15.5 cm SL). Calculated wet weights of all P. antarcticum from individual seal stomachs ranged between 4.7 and 16.9 kg the mean was 12.8 kg. Comparisons with net-hauls from the southern Gould Bay suggest that Weddell seals feed mainly in deeper water layers (>400 m) where adult P. antarcticum occur at higher densities.  相似文献   

17.
1. Climatic variation outside the breeding season affects fluctuations in population numbers of seabirds and marine mammals. A challenge in identifying the underlying biological mechanisms is the lack of information on their foraging strategies during winter, when individuals migrate far from their breeding grounds. 2. We investigated the temporal variability in resource partitioning within the guild of five sympatric Subantarctic penguins and fur seals from Crozet Islands. The stable isotopic ratios of carbon (delta(13)C) and nitrogen (delta(15)N) for whole blood were measured for penguins and fur seals, as were the isotopic ratios for penguin nails and food. Animals were sampled at two periods, during breeding in summer and at their arrival in the colonies in spring (hereafter winter, since the temporal integration of blood amounting to several months). 3. In summer, delta(13)C and delta(15)N for blood samples defined three foraging areas and two trophic levels, respectively, characterizing four nonoverlapping trophic niches. King penguins and female Antarctic and Subantarctic fur seals are myctophid eaters foraging in distinct water masses, while both macaroni and rockhopper penguins had identical isotopic signatures indicating feeding on crustaceans near the archipelago. 4. Isotopic ratios were almost identical in summer and winter suggesting no major changes in the species niches, and hence, in the trophic structure of the guild during the nonbreeding period. A seasonal difference, however, was the larger variances in delta(13)C (and also to a lesser extent in delta(15)N) values in winter, thus verifying our hypothesis that trophic niches widen when individuals are no longer central place foragers. 5. Winter isotopic ratios of macaroni penguins and male Antarctic fur seals had large variances, indicating individual foraging specializations. The range of delta(13)C and delta(15)N values of male fur seals showed, respectively, that they dispersed over a wide latitudinal gradient (from Antarctica to north of the archipelago) and fed on different prey (crustaceans and fish). 6. By comparing summer and winter isotopic ratios and examining the summer diet, we highlight the feeding habits of marine predators that were not previously addressed. The findings have a number of implications for understanding the functioning of the pelagic ecosystem and on the demography of these species.  相似文献   

18.
The foraging distributions of 20 breeding emperor penguins were investigated at Pointe Géologie, Terre Adélie, Antarctica by using satellite telemetry in 2005 and 2006 during early and late winter, as well as during late spring and summer, corresponding to incubation, early chick-brooding, late chick-rearing and the adult pre-moult period, respectively. Dive depth records of three post-egg-laying females, two post-incubating males and four late chick-rearing adults were examined, as well as the horizontal space use by these birds. Foraging ranges of chick-provisioning penguins extended over the Antarctic shelf and were constricted by winter pack-ice. During spring ice break-up, the foraging ranges rarely exceeded the shelf slope, although seawater access was apparently almost unlimited. Winter females appeared constrained in their access to open water but used fissures in the sea ice and expanded their prey search effort by expanding the horizontal search component underwater. Birds in spring however, showed higher area-restricted-search than did birds in winter. Despite different seasonal foraging strategies, chick-rearing penguins exploited similar areas as indicated by both a high ‘Area-Restricted-Search Index’ and high ‘Catch Per Unit Effort’. During pre-moult trips, emperor penguins ranged much farther offshore than breeding birds, which argues for particularly profitable oceanic feeding areas which can be exploited when the time constraints imposed by having to return to a central place to provision the chick no longer apply.  相似文献   

19.
ARGOS satellite telemetry and Global Location Sensors (geolocators) were used to identify the moult locations and the winter foraging dispersal of Adélie penguins after they left their breeding colonies on Signy Island in the South Orkney Islands. Animals were tracked during the period December 2004 to October 2005. All birds displayed a similar pattern of migratory behaviour, remaining away from colonies for approximately 9 months, at distances of up to 2,235 km. Moult locations were within the pack ice. Mean daily travel speeds to the moult locations were significantly faster when moving through open water than through pack ice. Moult occurred during February/March within a narrow latitudinal range (65–71°S), at a mean distance of 126 km from the ice edge; the mean duration of individual moult was c. 18.6 days. After moult, penguins spent the subsequent winter months moving north or north-eastward within the expanding winter pack ice, at a mean distance of 216 km from the ice edge, and in areas with ice cover >80%. The penguins returned to the vicinity of their colony between September 26 and October 22, 2005. This dependence of Adélie penguins on sea ice habitat suggests that any further reductions in sea ice extent in the Weddell Sea region would potentially have important impacts on the population processes of this pagophilic species.  相似文献   

20.
Summary Neutralizing antibodies against European phocine herpesvirus were detected in sera of to two Antarctic seal species, Weddell seals (Leptonychotes weddellii) and crabeater seals (Lobodon carcinophagus), collected in the eastern Weddell Sea. A large number of positive sera crossneutralized canine herpesvirus, but only few sera also contained antibodies to feline herpesvirus. The Weddell seals suffered from a respiratory disease when the sera were collected (January–February, 1990). The significance and possible origin of herpesvirus infections in Antarctic seals documented for the first time in this communication is discussed. All sera were negative for antibodies against phocine and canine distemper viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号