首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在山东省烟台地区的小麦上发生一种由土壤中禾谷多粘菌Polymyxa graminis传播的病毒病,感病小麦植株表现矮化褪绿和花叶症状.我们于1997年4月从病区采集感病小麦植株,进行了病毒种类鉴定.直接电镜观察发现有二种病毒粒子,一种粒子呈棒状,占大多数,其长度约为300nm和150nm; 另一种粒子呈线状,数量较少,长度为500nm~700nm.免疫电镜结果表明,棒状病毒粒子仅与土传小麦花叶病毒(soil-borne wheat mosaic virus, SBWMV)抗血清反应,而不与小麦黄花叶病毒(wheat yellow mosaic virus,WYMV)抗血清和小麦梭条斑花叶病毒(wheat spindle streat mosaic virus,WSSMV)抗血清反应;反之,线状病毒仅与WYMV、WSSMV抗血清反应,而不与SBWMV抗血清反应.用WYMV和SBWMV两种抗血清同时进行修饰时,线状病毒粒子和棒状病毒粒子均发生反应.  相似文献   

2.
The virus in naturally infected, stunted triticale plants was identified as soil‐borne wheat mosaic virus (SBWMV). The infected plants were collected in the Southern Wielkopolska region (Western Poland). Molecular analysis including RT‐PCR, and sequencing of the complete coding sequence of coat protein gene, was performed. The sequence of the Polish isolate of SBWMV (SBWMV‐Pol1) shared 100, 99 and 98% identities with the corresponding regions of De1 (AF519799), OKL‐1 (X81639) and US‐Nebraska (L07938) isolates of SBWMV, respectively. Phylogenetic analyses showed that the Polish isolate, SBWMV‐Pol1, clustered together with other SBWMV isolates. This is the first report of the occurrence of SBWMV in Poland and the second of its presence in Europe.  相似文献   

3.
The complete sequence of the two RNAs of a furovirus isolate from durum wheat in Italy was determined. Sequence comparisons and phylogenetic analysis were done to compare the Italian virus with Soil-borne wheat mosaic virus (SBWMV) from the USA and with furovirus sequences recently published as European wheat mosaic virus (EWMV), from wheat in France, and Soil-borne rye mosaic virus (SBRMV), from rye and wheat in Germany. Over the entire genome, the Italian isolate RNA1 and RNA2 had respectively 97.5% and 98.6% nucleotide identity with EWMV, 95.5% and 85.8% with SBRMV-G and 70.6% and 64.5% with SBWMV. The Italian isolate was therefore clearly distinct from SBWMV. The European isolates all appear to belong to the same virus and the name Soil-borne cereal mosaic virus may resolve earlier ambiguities.  相似文献   

4.
The complete sequence of the two RNAs of a furovirus isolate from durum wheat in Italy was determined. Sequence comparisons and phylogenetic analysis were done to compare the Italian virus withSoilborne wheat mosaic virus (SBWMV) from the USA and with furovirus sequences recently published asEuropean wheat mosaic virus (EWMV), from wheat in France, andSoilborne rye mosaic virus (SBRMV), from rye and wheat in Germany. Over the entire genome, the Italian isolate RNA1 and RNA2 had respectively 97.5% and 98.6% nucleotide identity with EWMV, 95.5% and 85.8% with SBRMV-G and 70.6% and 64.5% with SBWMV. The Italian isolate was therefore clearly distinct from SBWMV The European isolates all appear to belong to the same virus and the nameSoilborne cereal mosaic virus may resolve earlier ambiguities.  相似文献   

5.
The complete sequence of the two RNAs of a furovirus isolate from durum wheat in Italy was determined. Sequence comparisons and phylogenetic analysis were done to compare the Italian virus withSoilborne wheat mosaic virus (SBWMV) from the USA and with furovirus sequences recently published asEuropean wheat mosaic virus (EWMV), from wheat in France, andSoilborne rye mosaic virus (SBRMV), from rye and wheat in Germany. Over the entire genome, the Italian isolate RNA1 and RNA2 had respectively 97.5% and 98.6% nucleotide identity with EWMV, 95.5% and 85.8% with SBRMV-G and 70.6% and 64.5% with SBWMV. The Italian isolate was therefore clearly distinct from SBWMV The European isolates all appear to belong to the same virus and the nameSoilborne cereal mosaic virus may resolve earlier ambiguities.  相似文献   

6.
Outer membrane protein F of Pseudomonas aeruginosa has vaccine efficacy against infection by P. aeruginosa as demonstrated in a variety of animal models. Through the use of synthetic peptides, three surface-exposed epitopes have been identified. These are called peptides 9 (aa 261-274 in the mature F protein, TDAYNQKLSERRAN), 10 (aa 305-318, NATAEGRAINRRVE), and 18 (aa 282-295, NEYGVEGGRVNAVG). Both the peptide 9 and 10 epitopes are protective when administered as a vaccine. In order to develop a vaccine that is suitable for use in humans, including infants with cystic fibrosis, the use of viral vector systems to present the protective epitopes has been investigated. An 11-amino acid portion of epitope 10 (AEGRAINRRVE) was successfully inserted into the antigenic B site of the hemagglutinin on the surface of influenza virus. This chimeric influenza virus protects against challenge with P. aeruginosa in the mouse model of chronic pulmonary infection. Attempts to derive a chimeric influenza virus carrying epitope 9 have been unsuccessful. A chimeric plant virus, cowpea mosaic virus (CPMV), with epitopes 18 and 10 expressed in tandem on the large coat protein subunit (CPMV-PAE5) was found to elicit antibodies that reacted exclusively with the 10 epitope and not with epitope 18. Use of this chimeric virus as a vaccine afforded protection against challenge with P. aeruginosa in the mouse model of chronic pulmonary infection. Chimeric CPMVs with a single peptide containing epitopes 9 and 18 expressed on either of the coat proteins are in the process of being evaluated. Epitope 9 was successfully expressed on the coat protein of tobacco mosaic virus (TMV), and this chimeric virus is protective when used as a vaccine in the mouse model of chronic pulmonary infection. However, initial attempts to express epitope 10 on the coat protein of TMV have been unsuccessful. Efforts are continuing to construct chimeric viruses that express both the 9 and 10 epitopes in the same virus vector system. Ideally, the use of a vaccine containing two epitopes of protein F is desirable in order to greatly reduce the likelihood of selecting a variant of P. aeruginosa that escapes protective antibodies in immunized humans via a mutation in a single epitope within protein F. When the chimeric influenza virus containing epitope 10 and the chimeric TMV containing epitope 9 were given together as a combined vaccine, the immunized mice produced antibodies directed toward both epitopes 9 and 10. The combined vaccine afforded protection against challenge with P. aeruginosa in the chronic pulmonary infection model at approximately the same level of efficacy as provided by the individual chimeric virus vaccines. These results prove in principle that a combined chimeric viral vaccine presenting both epitopes 9 and 10 of protein F has vaccine potential warranting continued development into a vaccine for use in humans.  相似文献   

7.
8.
番茄花叶病毒单克隆抗体的制备及检测应用   总被引:17,自引:2,他引:17  
用番茄花叶病毒(ToMV)免疫的BAL B/c鼠脾细胞与SP2/0鼠骨髓瘤细胞融合,经筛选克隆,获得4株能稳定传代并分泌抗ToMV单克隆抗体(Mab)的杂交瘤细胞,其中2株能同时检测ToMV和烟草花叶病毒(TMV),各单克隆抗体腹水ELLSA效价在1∶32 000~1∶1 024 000之间。经TASELISA测定,4株单克隆抗体检测病汁液的稀释度均能达到1∶2 000倍以上。4株单克隆抗体与其他病毒无交叉反应。Westernblot分析表明,其中两株与ToMV176kD的外壳蛋白亚基有特异反应,而另两株无反应,推测它们是针对构象决定簇的抗体。  相似文献   

9.
Occurrence of fungally transmitted wheat mosaic viruses in China   总被引:3,自引:0,他引:3  
A soil-borne mosaic disease of winter wheat in Sichuan, Shaanxi, Hubei and Henan provinces was associated with infection by a virus with filamentous particles and that in Shandong, Anhui, Jiangsu and Zhejiang provinces by co-infection with this virus and soil-borne wheat mosaic virus. The virus with filamentous particles was identified serologically, by particle sizes, cytopathology and the molecular weights of the coat protein and the two RNA species to be either wheat spindle streak mosaic virus (WSSMV) or wheat yellow mosaic virus. These viruses are probably isolates of the same virus and the name WSSMV is preferred. In baiting tests using infested soil, the dilution endpoints for detecting WSSMV were 1/625-1/15625, and for the fungus vector, Polymyxa graminis, 1/3125-1/15625.  相似文献   

10.
A panel of 25 monoclonal antibodies (MAbs) raised against particles of two heterologous whitefly-transmitted geminiviruses (begomoviruses) was used in triple antibody-sandwich ELISA (TAS-ELISA) to determine the detectability and epitope profiles of 26 Indian isolates of tobacco leaf curl virus (TLCV) and 13 of croton yellow vein mosaic virus (CYVMV). Stock cultures of the two viruses had indistinguishable epitope profiles although they differ in symptomatology and particle stability. Their epitope profiles also strongly resembled those of Indian isolates of bhendi (okra) yellow vein mosaic and Indian cassava mosaic (ICMV) viruses. TLCV isolates from Andhra Pradesh, Gujarat and Karnataka States differed slightly in epitope profile: they reacted with at least eight out of 10 MAbs raised to ICMV but only one to four out of 15 MAbs raised to African cassava mosaic virus (ACMV). Virus isolates serologically indistinguishable from TLCV were detected in symptom-bearing weeds (Acanthospermum hispidum, Ageratum conyzoides, Euphorbia geniculata, Parthenium hysterophorus) found in leaf curl-affected tobacco fields and shown previously to be experimental hosts of TLCV. Indian TLCV isolates had small, consistent differences in epitope profile from Pakistani isolates but large differences from isolates from Burkina Faso, Malawi or Uganda. Isolates from the three African countries reacted with four or five of the ACMV MAbs but only one or two of the ICMV MAbs, and there were small but consistent inter-country differences. CYVMV isolates from three Indian States showed less epitope variation than did Indian isolates of TLCV. TAS-ELISA with MAb SCR 18 was a more sensitive test for detecting Indian TLCV isolates than was double antibody-sandwich ELISA with polyclonal antibodies.  相似文献   

11.
To study virus-vector interactions between Soilborne wheat mosaic virus (SBWMV) or Wheat spindle streak mosaic virus (WSSMV) and Polymyxa graminis Ledingham, P. graminis was propagated in plants grown hydroponically. P. graminis accumulated to high levels in several barley cultivars tested. Multiple developmental stages of P. graminis could be identified in infected barley roots. Accumulation of SBWMV and WSSMV inside P. graminis sporosori in the roots of soil-grown winter wheat and hydroponically grown barley was compared to determine if data obtained from plants naturally infected plants and plants infected by manual inoculation were similar. WSSMV coat protein (CP), SBWMV RNAs, SBWMV movement protein but not SBWMV CP were detected in both soil-grown winter wheat and hydroponically grown barley roots. These data are the first direct evidence that SBWMV and WSSMV are internalized by P. graminis.  相似文献   

12.
Monoclonal antibodies to beet soil-borne virus   总被引:1,自引:0,他引:1  
Four monoclonal antibodies (MCA) were obtained to the ‘Ahlum’ serotype of beet soil-borne virus (BSBV). On ELISA plates which had been precoated with polyclonal antibodies (PCA) all four MCA detected this serotype with a higher sensitivity than alkaline phosphatase-labelled PCA. Three of the MCA were specific for the ‘Ahlum’ serotype, but a fourth one also detected the distantly related ‘Wierthe’ serotype. Cross-reactions with wheat soil-borne or oat golden stripe furoviruses were not observed. One of the MCA reacted with an epitope which is exposed along the entire length of the BSBV particles, whereas two others were specific for epitopes which are exposed on one particle extremity only. Although these latter two epitopes occur apparently on the same extremity of the particles, they seem to be different, because one is found only on the particles of the ‘Ahlum’ serotype, whereas the other one is present also on the particles of the ‘Wierthe’ serotype. The fourth MCA is specific for a cryptotope which is not exposed on the intact virus particles, but presumably on some degradation product or precursor of the viral coat protein present in crude sap preparations. All four epitopes are SDS-labile; they are not detected on denatured viral coat protein on Western blots.  相似文献   

13.
Each of the two largest brome mosaic virus RNAs, RNA1 and RNA2, directs the synthesis of a large protein in cell-free extracts derived from wheat embryo. The size of each protein represents the translation of almost the entire length of the corresponding RNA. It was shown previously that brome mosaic virus RNA4 directs the synthesis of the coat protein and that brome mosaic virus RNA3, although it also contains the coat protein cistron, is translated mostly into a single product unrelated to the coat protein (Shih & Kaesberg, 1973). Thus, the brome mosaic virus genome encodes a total of four proteins.  相似文献   

14.
15.
The Chinese wheat mosaic virus (CWMV) genome consists of two positive-strand RNAs that are required for CWMV replication and translation. The eukaryotic translation elongation factor (eEF1A) is crucial for the elongation of protein translation in eukaryotes. Here, we show that silencing eEF1A expression in Nicotiana benthamiana plants by performing virus-induced gene silencing can greatly reduce the accumulation of CWMV genomic RNAs, whereas overexpression of eEF1A in plants increases the accumulation of CWMV genomic RNAs. In vivo and in vitro assays showed that eEF1A does not interact with CWMV RNA-dependent RNA polymerase. Electrophoretic mobility shift assays revealed that eEF1A can specifically bind to the 3ʹ-untranslated region (UTR) of CWMV genomic RNAs. By performing mutational analyses, we determined that the conserved region in the 3ʹ-UTR of CWMV genomic RNAs is necessary for CWMV replication and translation, and that the sixth stem-loop (SL-6) in the 3ʹ-UTR of CWMV genomic RNAs plays a key role in CWMV infection. We conclude that eEF1A is an essential host factor for CWMV infection. This finding should help us to develop new strategies for managing CWMV infections in host plants.  相似文献   

16.
Six monoclonal antibodies (MAbs) against a French isolate of barley yellow mosaic virus (BaYMV) pathotype 2 were produced and their isotypes determined. These MAbs were compared in ELISA for their reactivity with different isolates of BaYMV, wheat yellow mosaic virus (WYMV), wheat spindle streak mosaic virus (WSSMV) and oat mosaic virus (OMV).The six MAbs detected BaYMV in TAS ELISA and western blot, whereas in ACP ELISA no reaction was observed with isolates of BaYMV and WYMV. These MAbs could recognize the sequential motifs situated at the surface of viral particles. The six MAbs detected all the European isolates of BaYMV pathotype 1 and 2 and the Japanese isolate of this viral pathotype 1–1. In contrast to other MAbs, MAb IV did not react with the Japanese isolate of BaYMV pathotype II-l. In TAS ELISA. MAbs I, II, III, and IV detected the Japanese isolate of WYMV and American isolates of WSSMV only when they were captured by anti-WYMV polyclonal antibodies, A French isolate of OMV was detected only by the MAbs I and II in TAS ELISA with Polyclonal anti-BaYMV.  相似文献   

17.
Brief historyIn 1993, severe mosaic and necrosis symptoms were observed on corn (maize) and wheat from several Great Plains states of the USA. Based on the geographical location of infections, the disease was named High Plains disease and the causal agent was tentatively named High Plains virus. Subsequently, researchers renamed this virus as maize red stripe virus and wheat mosaic virus to represent the host and symptom phenotype of the virus. After sequencing the genome of the pathogen, the causal agent of High Plains disease was officially named as High Plains wheat mosaic virus. Hence, High Plains virus, maize red stripe virus, wheat mosaic virus, and High Plains wheat mosaic virus (HPWMoV) are synonyms for the causal agent of High Plains disease.TaxonomyHigh Plains wheat mosaic virus is one of the 21 definitive species in the genus Emaravirus in the family Fimoviridae.VirionThe genomic RNAs are encapsidated in thread‐like nucleocapsids in double‐membrane 80–200 nm spherical or ovoid virions.Genome characterizationThe HPWMoV genome consists of eight single‐stranded negative‐sense RNA segments encoding a single open reading frame (ORF) in each genomic RNA segment. RNA 1 is 6,981‐nucleotide (nt) long, coding for a 2,272 amino acid protein of RNA‐dependent RNA polymerase. RNA 2 is 2,211‐nt long and codes for a 667 amino acid glycoprotein precursor. RNA 3 has two variants of 1,439‐ and 1,441‐nt length that code for 286 and 289 amino acid nucleocapsid proteins, respectively. RNA 4 is 1,682‐nt long, coding for a 364 amino acid protein. RNA 5 and RNA 6 are 1,715‐ and 1,752‐nt long, respectively, and code for 478 and 492 amino acid proteins, respectively. RNA 7 and RNA 8 are 1,434‐ and 1,339‐nt long, code for 305 and 176 amino acid proteins, respectively.Biological propertiesHPWMoV can infect wheat, corn (maize), barley, rye brome, oat, rye, green foxtail, yellow foxtail, and foxtail barley. HPWMoV is transmitted by the wheat curl mite and through corn seed.Disease managementGenetic resistance against HPWMoV in wheat is not available, but most commercial corn hybrids are resistant while sweet corn varieties remain susceptible. Even though corn hybrids are resistant to virus, it still serves as a green bridge host that enables mites to carry the virus from corn to new crop wheat in the autumn. The main management strategy for High Plains disease in wheat relies on the management of green bridge hosts. Cultural practices such as avoiding early planting can be used to avoid mite buildup and virus infections.  相似文献   

18.
Murine monoclonal antibodies (MAbs) were produced for the detection of faba bean necrotic yellows virus (FBNYV), an isometric ssDNA virus belonging to a new, yet unnamed genus of plant viruses. A total of 19 FBNYV-specific MAbs were obtained from three fusion experiments and characterised by determining their immunoglobulin types and titres as well as their corresponding epitopes. At least six distinct epitopes were revealed on FBNYV particles of different virus isolates. Only two MAbs reacted with SDS-dissociated FBNYV virions in triple antibody sandwich (TAS)-ELISA and with viral capsid protein in Western blots. Almost all MAbs were more sensitive in detecting FBNYV in viruliferous aphids by TAS-ELISA than polyclonal anti-FBNYV IgG by double antibody sandwich ELISA and permitted virus detection in individual aphids even following short acquisition access feeding periods. Coat protein variation among FBNYV isolates and serological relatedness to taxonomically similar viruses was studied by determining the cross reactivity of these MAbs with several field isolates of FBNYV as well as with milk vetch dwarf (MDV), banana bunchy top (BBTV), and subterranean clover stunt (SCSV) viruses. Whereas none of the MAbs reacted with BBTV, only one reacted with SCSV, indicating that FBNYV and SCSV share a common epitope. By contrast, 16 of the 19 MAbs reacted with MDV, suggesting that FBNYV and MDV are serologically closely related and strains of the same virus. When all 19 MAbs produced were tested against a total of 107 samples of FBNYV collected during virus surveys in Egypt, Ethiopia, Jordan, Morocco and Syria, five MAbs showed differential reactions. While the majority of the samples reacted with all 19 MAbs, about 20% of the 107 FBNYV samples did not react with one and/or other of these five MAbs, permitting the differentiation of seven serotypes of FBNYV and suggesting a considerable coat protein variation in FBNYV isolates from the countries surveyed. The MDV isolate from Japan and five FBNYV samples from Ethiopia appeared to be the least closely related to typical FBNYV isolates by not reacting with three and four, respectively, of the five differentiating Mabs.  相似文献   

19.
The Eastern equine encephalitis virus (EEEV) E2 protein is one of the main targets of the protective immune response against EEEV. Although some efforts have done to elaborate the structure and immune molecular basis of Alphaviruses E2 protein, the published data of EEEV E2 are limited. Preparation of EEEV E2 protein-specific antibodies and define MAbs-binding epitopes on E2 protein will be conductive to the antibody-based prophylactic and therapeutic and to the study on structure and function of EEEV E2 protein. In this study, 51 EEEV E2 protein-reactive monoclonal antibodies (MAbs) and antisera (polyclonal antibodies, PAbs) were prepared and characterized. By pepscan with MAbs and PAbs using enzyme-linked immunosorbent assay, we defined 18 murine linear B-cell epitopes. Seven peptide epitopes were recognized by both MAbs and PAbs, nine epitopes were only recognized by PAbs, and two epitopes were only recognized by MAbs. Among the epitopes recognized by MAbs, seven epitopes were found only in EEEV and two epitopes were found both in EEEV and Venezuelan equine encephalitis virus (VEEV). Four of the EEEV antigenic complex-specific epitopes were commonly held by EEEV subtypes I/II/III/IV (1-16aa, 248-259aa, 271-286aa, 321-336aa probably located in E2 domain A, domain B, domain C, domain C, respectively). The remaining three epitopes were EEEV type-specific epitopes: a subtype I-specific epitope at amino acids 108–119 (domain A), a subtype I/IV-specific epitope at amino acids 211–226 (domain B) and a subtype I/II/III-specific epitope at amino acids 231–246 (domain B). The two common epitopes of EEEV and VEEV were located at amino acids 131–146 and 241–256 (domain B). The generation of EEEV E2-specific MAbs with defined specificities and binding epitopes will inform the development of differential diagnostic approaches and structure study for EEEV and associated alphaviruses.  相似文献   

20.
Wheat yellow mosaic virus (WYMV) isolate HC was used for viral cDNA synthesis and sequencing. The results show that the viral RNA1 is 7629 nueleotides encoding a polyprotein with 2407 amino acids, from which seven putative proteins may be produced by an autolytie cleavage processing besides the viral coat protein. The RNA2 is 3639 nueleotides and codes for a polypretein of 903 amino acids, which may contain two putative non-structural proteins. Although WYMV shares a similarity in genetic organization to wheat spindle streak mosaic virus (WSSMV), the identities in their nucleotide sequences or deduced amino acid sequences are as low as 70% and 75 % respectively. Based on this result, it is confirmed that WYMV and WSSMV are different species within Bymovirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号