首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was undertaken to determine whether hyperfiltration exists at the single nephron level and whether albumin excretion is increased early in the course of diabetes in Biobreeding rats. Diabetic rats were studied at 8-12 weeks after the onset of diabetes. Control animals were age-matched, diabetes-resistant rats. Urinary and tubular fluid albumin concentrations were measured by polyacrylamide gel electrophoresis. Clearance and micropuncture techniques were used to determine whole kidney and single nephron glomerular filtration rate, renal blood flow, and glomerular capillary pressure. The urinary albumin excretion rate (1.3 +/- 0.1 mg/24 hr) and the tubular fluid albumin concentration (4.7 +/- 0.7 mg/dl) in the diabetic group were significantly elevated when compared with urinary albumin excretion (0.9 +/- 0.1 mg/24 hr) and tubular fluid albumin concentration (2.5 +/- 0.5 mg/dl) in the control group. There were no significant differences in glomerular hemodynamics (whole kidney or single nephron glomerular filtration rate or glomerular capillary pressure) between diabetic and control rats. The kidney weight and kidney weight to body weight ratio were significantly higher in diabetic rats when compared with control rats. Early diabetes in Biobreeding rats is characterized by mild albuminuria and increased kidney size, but not glomerular hyperfiltration.  相似文献   

2.
Urotensin II (UII) is the most potent vasoconstrictor peptide ever identified. In order to clarify the pathophysiological role of UII in diabetes mellitus, we examined plasma immunoreactive UII levels and urinary excretion of immunoreactive UII in 10 control subjects and 48 patients with Type 2 diabetes mellitus. The patients were divided into three groups according to the renal function: Group I with Ccr > or = 70 ml/min, group II with 30 < or = Ccr <70 ml/min and group III with Ccr <30 ml/min. Plasma immunoreactive UII levels were elevated in the three diabetic groups compared with normal controls (P <0.05). Group III patients had significantly higher plasma immunoreactive UII levels (15.9 +/- 2.2 fmol/ml, mean +/- S.E.M., n=6) by approximately 1.6-fold than did group I (10.9 +/- 0.9 fmol/ml, n=17) and group II (10.8 +/- 0.8 fmol/ml, n=25) (P <0.05). Urinary excretion of immunoreactive UII was significantly increased in group III patients (52.4 +/- 14.8 pmol/day) by more than 1.8-fold compared with control subjects, groups I and II (P <0.005). Fractional excretion of immunoreactive UII significantly increased as renal function decreased. Presence of diabetic retinopathy or neuropathy had negligible effects on plasma immunoreactive UII levels and urinary immunoreactive UII excretion. Reverse phase HPLC analyses showed three immunoreactive peaks in normal plasma extracts and multiple immunoreactive peaks in normal urine extracts. Thus, Type 2 diabetes mellitus itself is a factor to elevate plasma immunoreactive UII levels, and accompanying renal failure is another independent factor for the increased plasma immunoreactive UII levels in Type 2 diabetic patients. Increased urinary immunoreactive UII excretion in Type 2 diabetic patients with advanced diabetic nephropathy may be due not only to the elevated plasma immunoreactive UII levels but also to increased UII production and/or decreased UII degradation in the diseased kidney.  相似文献   

3.
A hallmark of overt congestive heart failure (CHF) is attenuated cGMP production by endogenous atrial natriuretic peptide (ANP) with renal resistance to ANP. ANP and brain natriuretic peptides (BNP) are of myocardial origin, whereas urodilatin (Uro) is thought to be derived from kidney. All three peptides are agonists to the natriuretic peptide-A receptor. Our objective was to compare the cardiorenal and humoral actions of ANP, BNP, and Uro in experimental overt CHF. We determined cardiorenal and humoral actions of 90 min of intravenous equimolar infusion of ANP, BNP, and Uro (2 and 10 pmol.kg-1.min-1) in three separate groups of anesthetized dogs with rapid ventricular pacing-induced overt CHF (240 beats/min for 10 days). BNP resulted in increases in urinary sodium excretion (U(Na)V) (2.2+/-0.7 to 164+/-76 microeq/min, P<0.05) and glomerular filtration rate (GFR) (27+/-4 to 52+/-11 ml/min, P<0.05) that were greater than those with Uro (P<0.05), whereas ANP did not result in increases in U(Na)V or GFR. Increases in plasma cGMP (25+/-2 to 38+/-2 pmol/ml, P<0.05) and urinary cGMP excretion with BNP (1,618+/-151 to 6,124+/-995 pmol/min, P<0.05) were similar to those with Uro; however, there was no change with ANP. Cardiac filling pressures were reduced in all three groups. These studies also support the conclusion that in experimental overt CHF, renal resistance to natriuretic peptides in increasing rank order is BNP相似文献   

4.
Iwata T  Uchida S  Hori M  Sakai K  Towatari T  Kido H 《Life sciences》1999,65(17):1725-1732
The kidney is the major target of parathyroid hormone (PTH), and PTH influences the urinary excretion of calcium, phosphate and hydrogen ions. It was previously reported that the urinary, excretion of N-acetyl-beta-D-glucosaminidase (NAG), a lysosomal enzyme, transiently increases after human PTH (hPTH) (1-34) infusion in normal subjects and idiopathic hypoparathyroidism patients, but not in pseudohypoparathyroidism type I patients. Here we report that intravenous infusion of hPTH(1-34) to rats transiently increased the urinary excretion of various lysosomal enzymes, such as beta-glucuronidase and acid phosphatase as well as NAG. However, it did not affect the urinary excretion of tubular brush border membrane enzymes, i.e. alkaline phosphatase, leucine aminopeptidase and gamma-glutamyl transpeptidase. Human PTH(1-34) dose-dependently increased the urinary excretion of NAG in rats with a peak at 30 min, which returned to a baseline within 60 min. The increase in the urinary NAG excretion caused by hPTH(1-34) positively correlated with the increase in the urinary cAMP excretion (r = 0.844, p < 0.01), and infusion of dibutyryl cAMP at a dose of 20 mg/kg similarly increased the urinary excretion of NAG. These results suggested that the increase in the urinary excretion of lysosomal enzymes caused by hPTH(1-34) may be a functional response to hPTH(1-34) occurring in the renal tubules via PTH signaling pathway.  相似文献   

5.
We investigated whether lowering food intake by high phosphorus (P) diet influenced parathyroid hormone (PTH) actions, bone turnover markers, and kidney mineral concentration in rats. Rats in two of the three groups were respectively given free access to a control diet (C group) and a high P diet (HP group) for 21 days. Rats in another group (PF group) were pair-fed the control diet with the HP group. Compared to the C and PF groups, serum PTH concentration, urinary C-terminal telopeptide of type I collagen excretion, and kidney calcium and P concentrations were significantly higher in the HP group. Urinary excretion of cAMP was significantly lower in the HP group than in the C and PF groups. These results suggested that high P diet decreased PTH action in the kidney and increased bone resorption and kidney mineral concentrations independently of lowering food intake.  相似文献   

6.
We investigated whether lowering food intake by high phosphorus (P) diet influenced parathyroid hormone (PTH) actions, bone turnover markers, and kidney mineral concentration in rats. Rats in two of the three groups were respectively given free access to a control diet (C group) and a high P diet (HP group) for 21 days. Rats in another group (PF group) were pair-fed the control diet with the HP group. Compared to the C and PF groups, serum PTH concentration, urinary C-terminal telopeptide of type I collagen excretion, and kidney calcium and P concentrations were significantly higher in the HP group. Urinary excretion of cAMP was significantly lower in the HP group than in the C and PF groups. These results suggested that high P diet decreased PTH action in the kidney and increased bone resorption and kidney mineral concentrations independently of lowering food intake.  相似文献   

7.
The effect of synthetic 1-34 fragment of human parathyroid hormone (hPTH(1-34] on plasma adenosine 3',5'-monophosphate (cAMP) in human subjects and the diagnostic criteria for the plasma cAMP response in an Ellsworth-Howard test were studied. 20 or 30 micrograms hPTH(1-34) and 200 USP Parathormone (Eli Lilly & Co.), infused intravenously over 5 min, produced very similar patterns of response in plasma cAMP, peak values being observed within 5 or 10 min after the end of the infusion. The maximum levels of plasma cAMP were over 111.5 pmol/ml in all of the normal subjects (n = 5) and patients with idiopathic hypoparathyroidism (n = 22), including those of children, but the plasma cAMP did not rise above 65.0 pmol/ml in pseudohypoparathyroidism (n = 7). There existed a significant correlation between the maximum plasma cAMP concentrations and increases in urinary cAMP excretion after infusions of both hPTH(1-34) and Parathormone. These results suggest that hPTH(1-34) has effects essentially identical to those of native PTH on plasma cAMP. We would like to propose a new diagnostic criterion in the Ellsworth-Howard test: a peak value of plasma cAMP over 100 pmol/ml after 30 micrograms hPTH(1-34) infusion is regarded as a normal response.  相似文献   

8.
The effect of estrogens on the renal responsiveness to parathyroid hormone (PTH) was examined by PTH loading tests with synthetic human-PTH (1-34) in 8 normal elderly females (mean +/- SD age, 81.0 +/- 7.1 yr) before and after administration of estrogen (Premarin 1.25 mg/day for 4 weeks). Basal urinary adenosine cyclic 3', 5'-monophosphate (cAMP) excretion showed a tendency to increase after estrogen administration (5.47 +/- 1.68 vs 6.60 +/- 2.67 nmol/100 ml GFR) and the theoretical renal phosphorous threshold showed a tendency to decrease from 3.22 +/- 0.98 to 2.73 +/- 0.56 mg/dl. The blood ionized calcium concentration did not change after estrogen administration (4.44 +/- 0.16 vs 4.32 +/- 0.20 mg/dl) and serum phosphorous (P) decreased significantly (3.65 +/- 0.47 vs 3.01 +/- 0.42 mg/dl, p less than 0.05). There was no increase in mean serum immunoreactive PTH (0.34 +/- 0.10 vs 0.34 +/- 0.05 ngeq/ml). The urinary excretions of cAMP in response to PTH loading [100 U of human-PTH (1-34), intravenously] significantly (p less than 0.05) increased (94.8 +/- 57.0 vs 196.7 +/- 118.3 nmol/100 ml GFR/h) after estrogen administration. Moreover the changes in urinary excretion of cAMP (r = 0.698, p less than 0.01) and P (r = 0.555, p less than 0.05) induced by the PTH loading were positively correlated with serum estradiol in elderly females, assessed as groups before and after estrogen administration. These results suggest that estrogens may enhance the renal responsiveness to exogenous PTH administration.  相似文献   

9.
Dietary intake of high phosphorus (P) is well-described to increase serum levels of PTH, however, how this increased serum PTH affects the PTH actions in major target tissues, particularly in kidney, remains uncovered. We therefore undertook to clarify this point in intact animals fed the high-P diet by examining various parameters of the PTH actions. Twelve weanling Wistar male rats were assigned randomly into the groups; a control group Ca: P = 1: 1 and a high-P group (Ca: P = 1: 3) fed the standard AIN 76 diet supplemented with P (0.5 and 1.5 g/100 g diet). After 3 week feeding, in the high-P diet group, we observed that serum Ca is lowered without difference in serum P when compared to those in the control group. Excretion of urine cAMP, an index of the renal PTH action, was also decreased with higher excretion of urine P by feeding the high P diet. In agreement with the decreased cAMP excretion, a clear reduction in the PTH/PTHrP receptor gene expression estimated by Northern blotting was observed in the kidney irrespective of increased levels of serum PTH. Thus, the present study indicated that high P dietary intake rather reduces the PTH actions in kidney though the serum PTH is increased.  相似文献   

10.
This study examined the contribution of intrarenal alpha(2)-adrenoceptor mechanisms to the enhanced urine flow rate (V) and urinary sodium excretion (U(Na)V) responses in ketamine-xylazine-anesthetized rats. Ten minutes after left renal artery (LRA) injection, the alpha(2)-adrenoceptor antagonist yohimbine (5 microg) significantly decreased V from 58 +/- 8 to 35 +/- 7 microl. min(-1). g kidney wt(-1) and U(Na)V from 2.8 +/- 0.4 to 2.1 +/- 0.4 microeq. min(-1). g kidney wt(-1) without altering right kidney function. The renal effects of the LRA injection of yohimbine were completely abolished in chronic bilaterally renal-denervated (RDNX) rats. In RDNX rats, a higher LRA dose of yohimbine (15 microg) significantly reduced left and right kidney V, with no effects on U(Na)V. In separate bladder-catheterized rats, yohimbine (0.5 mg/kg), 20 min after intravenous injection, significantly decreased V from 63 +/- 9 to 13 +/- 2 microl. min(-1). g kidney wt(-1 )and U(Na)V from 4.5 +/- 0.5 to 1.1 +/- 0.1 microeq. min(-1). g kidney wt(-1). In RDNX rats, this dose of yohimbine reduced V and U(Na)V, but the magnitude was blunted compared with intact rats. In contrast, 0.1 mg/kg iv yohimbine significantly reduced V and U(Na)V to similar magnitudes in intact and RDNX groups. Together, these findings indicate that intravenous xylazine acts by renal nerve-dependent and -independent mechanisms to enhance renal excretory function in ketamine-anesthetized rats. Because the effects of the LRA dose of yohimbine were abolished in renal-denervated animals, it appears that xylazine has a direct renal action to augment the renal excretion of water and sodium via a presynaptic alpha(2)-adrenoceptor pathway that inhibits the release of neurotransmitters from renal sympathetic nerve terminals.  相似文献   

11.
This study investigates the phosphorus (P) homeostasis in the process of an altered parathyroid hormone (PTH) action in the kidney of rats fed a high P diet. Four-week-old male Wistar strain rats were fed diets containing five different P levels (0.3, 0.6, 0.9, 1.2 and 1.5%) for 21 days. The serum PTH concentration and urinary excretion of P were elevated with increasing dietary P level. Compared to rats fed the 0.3% P diet, the serum calcium (Ca) concentration remained unchanged, while the serum 1,25(OH)(2)D(3) concentration and urinary excretion of cAMP were elevated with increasing dietary P level in rats fed the high P diets containing 0.6-0.9% P. On the other hand, a lower serum Ca concentration was observed in rats fed the high P diets containing 1.2% or greater P. The serum 1,25(OH)(2)D(3) concentration remained unchanged in rats fed the high P diets containing 1.2% or greater P, comparison with rats fed the 0.3% P diet. The urinary excretion of cAMP and PTH/PTH-related peptide (PTHrP) receptor and type II sodium-dependent phosphate transporter (NaPi-2) mRNA in the kidney were both decreased in rats fed the high P diets containing 1.2% or greater P. In conclusion, a high P diet with subsequent decrease in serum Ca concentration suppressed the PTH action in the kidney due to PTH/PTHrP receptor mRNA down-regulation. Furthermore, an increase in the urinary excretion of P might have been caused by decreased NaPi-2 mRNA expression without the effects of PTH and 1,25(OH)(2)D(3).  相似文献   

12.
The potent neutral endopeptidase inhibitor SQ 28,603 (N-(2-(mercaptomethyl)-1-oxo-3-phenylpropyl)-beta-alanine) significantly increased excretion of sodium from 4.9 +/- 2.3 to 14.3 +/- 2.1 muequiv./min and cyclic 3',5'-guanosine monophosphate from 118 +/- 13 to 179 +/- 18 pmol/min after intravenous administration of 300 mumol/kg (approximately 80 mg/kg) in conscious female cynomolgus monkeys. SQ 28,603 did not change blood pressure or plasma atrial natriuretic peptide concentrations in the normal monkeys. In contrast, 1-h infusions of 3, 10, or 30 pmol.kg-1.min-1 of human atrial natriuretic peptide lowered blood pressure by -3 +/- 4, -9 +/- 4, and -27 +/- 3 mmHg (1 mmHg = 133.322 Pa), increased cyclic guanosine monophosphate excretion from 78 +/- 11 to 90 +/- 6, 216 +/- 33, and 531 +/- 41 pmol/min, and raised plasma atrial natriuretic peptide from 7.2 +/- 0.7 to 21 +/- 4, 62 +/- 12, and 192 +/- 35 fmol/mL without affecting sodium excretion. In monkeys receiving 10 pmol.kg-1.min-1 of atrial natriuretic peptide, 300 mumol/kg of SQ 28,603 reduced mean arterial pressure by -13 +/- 5 mmHg and increased sodium excretion from 6.6 +/- 3.2 to 31.3 +/- 6.0 muequiv./min, cyclic guanosine monophosphate excretion from 342 +/- 68 to 1144 +/- 418 pmol/min, and plasma atrial natriuretic peptide from 124 +/- 8 to 262 +/- 52 fmol/mL. In conclusion, SQ 28,603 stimulated renal excretory function in conscious monkeys, presumably by preventing the degradation of atrial natriuretic peptide by neutral endopeptidase.  相似文献   

13.
We studied the effect of a transplantable Leydig-cell tumor (Rice H-500) on serum calcium, parathyroid hormone (PTH), and urinary cAMP in intact Fischer-344 rats. The tumor caused rapid and severe hypercalcemia (control = 10.5 +/- 0.1 mg/dl [mean +/- S.E.] vs. 14.6 +/- 0.9 at day 12 post tumor inoculation) without evidence of metastasis. Progressive renal impairment and death generally occurred within 15 days of tumor inoculation. Serum PTH declined from control values before hypercalcemia occurred and was significantly reduced in tumor-bearing hypercalcemic rats (mean = 60 +/- 8% of control values). Urinary cAMP excretion was increased in tumor-bearing rats (mean at day 12 post inoculation = 12.2 +/- 1.4 nmol/dl creatinine clearance vs. control = 6.2 +/- 0.2) and correlated positively with serum calcium. The Rice H-500 Leydig-cell tumor appears to secrete a humoral factor capable of causing hypercalcemia. This factor may also increase urinary cAMP excretion in a manner analogous to PTH, but it is not detected by PTH radioimmunoassay.  相似文献   

14.
The response of cAMP to antidiuretic hormone (ADH) was studied using rat renal medullary cells in a monolayer culture. In addition, cAMP response to parathyroid hormone (PTH) was studied in renal cortical cells. As the culture aged, an increase in basal cAMP content and a gradual decrease in the cAMP responsiveness to arginine vasopressin (AVP) were observed. After 2 days of culture, AVP and hPTH-(1-34) produced a rapid increase in intracellular cAMP with single peaks, after 10 min and 5 min, respectively. Extracellular cAMP was increased linearly by both AVP and hPTH-(1-34). The response of cAMP to AVP was markedly greater in the medulla than in the cortex, while the response to hPTH-(1-34) was remarkable only in the cortex. Outstanding sensitivity of cAMP responsiveness was observed in this system, i.e., 10(-12) M AVP (1 pg/ml) and 2.43 X 10(-10) M hPTH-(1-34) (1 ng/ml) provoked significant increases in cAMP from the basal level of 0.31 +/- 0.04 and 0.59 +/- 0.05 pmol/dish to 0.79 +/- 0.03 and 1.07 +/- 0.13 pmol/dish, respectively (P less than 0.001). In the medulla, potencies of lysine vasopressin (LVP), DDAVP and oxytocin at a concentration of 10(-9) M were 76.1%, 154.2% and 8.1% of that of AVP, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Proteinuria is currently considered a very sensitive predictor of diabetic nephropathy, but 20-25% of all diabetic patients with negative Albustix reaction excrete higher than normal (< 20 mg/24 h) amounts of albumin in their urine. It is our hypothesis that platelet-activating factor (PAF), a potent glycerophospholipid that acts as a chemical mediator for a wide spectrum of biological activities, including increased vascular permeability, may be produced in significant amounts during periods preceding microalbuminuria. In this study, we compared urinary PAF excretion in Mexican-American subjects who were diagnosed with non-insulin dependent diabetes mellitus (NIDDM) with their healthy control counterparts. The age of the NIDDM subjects (45.9 +/- 2.1 years) was not significantly different from the healthy control group, which was 39.4 +/- 2.7 years (P < 0.0672). The NIDDM subjects (body mass index, 29.9 +/- 1.1 compared to 26.1 +/- 0.9 kg/m2 in healthy controls) were characterized by significantly increased (P < 0.05) fasting plasma glucose (192 +/- 11 vs. 97 +/- 4 mg/dl in healthy controls), fasting insulin (20.9 +/- 2.4 vs. 12.3 +/- 1.6 microU/ml), fasting C-peptide (2.93 +/- 1.26 vs. 1.48 +/- 0.51 ng/ml), and hemoglobin A1c (10.3 +/- 0.7 vs. 5.6 +/- 0.3%), respectively. The urine output for the NIDDM and control subjects were 1942 +/- 191 ml/24 h and 1032 +/- 94 ml/24 h, respectively, and urinary albumin excretion (UAE) rates were estimated to be 38 +/- 7 micrograms/min and 11 +/- 1 micrograms/min, respectively. The NIDDM subjects produced significantly increased levels of urinary PAF (2606.3 +/- 513.1 ng/24 h compared with 77.9 +/- 14.1 ng/24 h in controls (or 1706.3 +/- 420.8 ng/ml compared with 85.4 +/- 17.8 pg/ml of urine, in NIDDM and control subjects, respectively). We found that urinary PAF excretion was significantly correlated with microalbumin excretion (r = 0.7) especially at UAE rates greater than 30 mg/day and more importantly, some NIDDM patients with negative Albustix reaction (i.e. normal UAE) produced significantly more PAF, suggesting that PAF excretion may precede microalbuminuria and that subtle injury to the kidneys are present in NIDDM long before overt albuminuria ensues, urinary PAF measurements could potentially therefore serve as a sensitive indicator of renal injury in diabetes mellitus. These results lend further credence to our hypothesis that PAF may be the biochemical compound linking the various members of the insulin resistance syndrome.  相似文献   

16.
The renal actions of oxytocin were studied in the conscious unrestrained rat infused with 0.077 M saline at a rate of 150 microliters/min. During the control period volume and sodium excretion reached stable equilibria, the rates being equal to those infused. Administration of oxytocin at 200 pmol/min produced plasma oxytocin levels of 26.0 +/- 2.1 pmol/l and caused a significant diuresis and natriuresis. Renal responses could also be seen with a lower dose of 30 pmol/min which produced plasma levels of 5.1 +/- 0.5 pmol/l while a dose of 15 pmol/min which produced no significant increase in the plasma oxytocin had no renal effect. It appears that oxytocin has a natriuretic action in concentrations within the physiological range.  相似文献   

17.
The interaction between nitric oxide (NO) and renin is controversial. cAMP is a stimulating messenger for renin, which is degraded by phosphodiesterase (PDE)-3. PDE-3 is inhibited by cGMP, whereas PDE-5 degrades cGMP. We hypothesized that if endogenous cGMP was increased by inhibiting PDE-5, it could inhibit PDE-3, increasing endogenous cAMP, and thereby stimulate renin. We used the selective PDE-5 inhibitor zaprinast at 20 mg/kg body wt ip, which we determined would not change blood pressure (BP) or renal blood flow (RBF). In thiobutabarbital (Inactin)-anesthetized rats, renin secretion rate (RSR) was determined before and 75 min after administration of zaprinast or vehicle. Zaprinast increased cGMP excretion from 12.75 +/- 1.57 to 18.67 +/- 1.87 pmol/min (P < 0.003), whereas vehicle had no effect. Zaprinast increased RSR sixfold (from 2.95 +/- 1.74 to 17.62 +/- 5.46 ng ANG I. h(-1) x min(-1), P < 0.024), while vehicle had no effect (from 4.08 +/- 2.02 to 3.87 +/- 1.53 ng ANG I x h(-1) x min(-1)). There were no changes in BP or RBF. We then tested whether the increase in cGMP could be partially due to the activity of the neuronal isoform of NO synthase (nNOS). Pretreatment with the nNOS inhibitor 7-nitroindazole (7-NI; 50 mg/kg body wt) did not change BP or RBF but attenuated the renin-stimulating effect of zaprinast by 40% compared with vehicle. In 7-NI-treated animals, zaprinast-stimulated cGMP excretion was attenuated by 48%, from 9.17 +/- 1.85 to 13.60 +/- 2.15 pmol/min, compared with an increase from 10.94 +/- 1.90 to 26.38 +/- 3.61 pmol/min with zaprinast without 7-NI (P < 0.04). This suggests that changes in endogenous cGMP production at levels not associated with renal hemodynamic changes are involved in a renin-stimulatory pathway. One source of this cGMP may be nNOS generation of NO in the kidney.  相似文献   

18.
Rat [(59)Fe]haem-(125)I-labelled haemopexin complexes (700pmol/rat) associate rapidly and exclusively with the liver after intravenous injection into anaesthetized rats. The two isotopes exhibit different patterns of accumulation. Liver (125)I-labelled haemopexin is maximum 10min after injection (20+/-4.9pmol/g of liver) and then declines by 2h to the low values (about 3pmol/g of liver) seen after injection of the apoprotein. In contrast, [(59)Fe]haem accumulates in the liver for at least 2h. Haemopexin undergoes no extensive proteolysis during 2h of haem transport as shown by precipitation with acid (98%) and specific antiserum (92%) and by electrophoresis. Moreover, only 1-2% of the dose is located in extrahepatic tissues, and there is no significant urinary excretion of either (125)I or (59)Fe. Hepatic uptake at 10min is saturable, reaching 200pmol of haemopexin/g of liver and 350pmol of haem/g of liver at a dose of 9nmol/rat, whereas uptake of the apoprotein is 3-5% of the dose. This suggests that the interaction of haem-haemopexin with the liver is a specific receptor-mediated process. The complex probably interacts via the protein moiety, since the haem analogues mesohaem and deuterohaem do not affect association of the protein with the liver but the species of haemopexin does. Increasing amounts of protein are associated with the liver 5min after injection in the order: human>rabbit>rat, and haem uptake is consistently increased. For both rat and rabbit haemopexin saturation is reached at the same concentration of protein, i.e. 180-200pmol/g of liver, indicating that the different protein species bind to a common receptor. We propose that haemopexin transports haem to the liver by a specific receptor-mediated process and then returns to the circulation.  相似文献   

19.
Effect of retinoic acid in experimental diabetic nephropathy   总被引:21,自引:0,他引:21  
  相似文献   

20.
Sequential subcutaneous PTH injection therapy (repeated 14 days of PTH administration and a subsequent treatment pause for a few weeks) is known to increase bone mineral density in patients with osteopenic disorders. Alternative methods of drug delivery may be beneficial in increasing compliance. A pilot study was performed in 10 healthy volunteers (4 female/6-male, age: 25.6 +/- 3.5 years, BMI: 22.3 +/- 2.4 kg/m 2, mean +/- SD) to assess the pharmacokinetic profiles of 1600 IU of PTH(1 - 34) using the pulmonary Technosphere drug delivery system in comparison to a subcutaneous injection of 400 IU. The treatments were administered in the morning after an overnight fast and blood samples for measurement of PTH(1 - 34), PTH(1 - 84), and calcium and calcitonin were taken over a period of 6 hours. Both injection and pulmonary application of PTH(1 - 34) were well tolerated. After pulmonary administration of Technosphere/PTH(1 - 34), PTH(1 - 34) appeared in the serum with a faster concentration increase (T max: pulmonary 10 +/- 5 min vs. subcutaneous 28 +/- 8 min, p < 0.001) and with higher maximal concentrations (C max : pulmonary 309 +/- 215 pmol/l vs. subcutaneous 102 +/- 45 pmol/l, p < 0.05) as compared to the subcutaneous injection. The relative bioavailability of pulmonary Technosphere/PTH(1 - 34) was calculated to be 48 %. No differences were seen between pulmonary and subcutaneous application with regard to the PTH(1 - 84), calcitonin and calcium concentrations. In conclusion, pulmonary application of Technosphere/PTH(1 - 34) appears to be an effective and thus attractive candidate for PTH substitution therapy in osteoporosis and other conditions leading to a decrease in bone mineral density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号