首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Expression of cloned bovine adrenal rhodanese   总被引:2,自引:0,他引:2  
A cDNA for the enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) has been cloned from a bovine adrenal library. An initiator methionine codon precedes the amino-terminal amino acid found in the isolated protein. Rhodanese is synthesized in the cytoplasm and transferred to the mitochondrial matrix. Thus, any amino-terminal sequence required for organelle import is retained in the mature protein. Furthermore, the DNA sequence shows that there are three additional amino acids, Gly-Lys-Ala, at the carboxyl terminus that are not found by protein sequencing. Additionally, comparison of the published amino acid sequence with that encoded by the open reading frame revealed three differences in the amino acid sequence. Comparison of the bovine and chicken liver sequences shows an overall level of 70% sequence homology, but there is complete identity of all residues that have been implicated in the function of the enzyme. When two mammalian cells, cos-7 and 293 cells, were transiently transfected with a plasmid containing the rhodanese coding region, rhodanese activity in lysates increased approximately 20-fold. Fluorograms of denaturing polyacrylamide gels detected a large increase in a polypeptide that co-migrated with the native protein and reacted with anti-rhodanese antibodies. Nondenaturing gels showed two active species that co-migrated with the two major electrophoretic forms purified by current procedures. Escherichia coli, transformed with a plasmid containing the rhodanese coding region, showed a 15-fold increase in rhodanese activity over baseline values. When the E. coli recombinant protein was analyzed on a nondenaturing gel, only one species was observed that co-electrophoresed with the more electropositive variant seen in purified bovine liver rhodanese. This single variant could be converted by carboxypeptidase B digestion to a form of the enzyme that co-migrated with the more electronegative species isolated from bovine liver. Thus, two major, enzymatically active electrophoretic variants, commonly observed in mammalian cells, can be accounted for by carboxyl-terminal processing without recourse to other post-translational modifications.  相似文献   

2.
A full length cDNA clone encoding the precursor of the rat liver mitochondrial phosphate transporter (H+/Pi symporter) has been isolated from a cDNA library using a bovine heart partial length phosphate transporter clone as a hybridization probe. The entire clone is 1263 base pairs in length with 5'- and 3'-untranslated regions of 16 and 168 base pairs, respectively. The open reading frame encodes for the mature protein (312 amino acids) preceded by a presequence of 44 amino acids enriched in basic residues. The polypeptide sequence predicted from the DNA sequence was confirmed by analyzing the first 17 amino-terminal amino acids of the pure phosphate transporter protein. The rat liver phosphate transporter differs from the bovine heart transporter in 32 amino acids (i.e. approximately 10%). It contains a region from amino acid 139 to 159 which is 37% identical with the beta-subunit of the liver mitochondrial ATP synthase. Amino acid sequence comparisons of the Pi transporter with Pi binding proteins, other H+-linked symporters, and the human glucose transporter did not reveal significant sequence homology. Analysis of genomic DNA from both rat and S. cerevisiae by Southern blots using the rat liver mitochondrial Pi carrier cDNA as a probe revealed remarkably similar restriction patterns, a finding consistent with the presence in lower and higher eukaryotes of homologous Pi carrier proteins. This is the first report of the isolation, sequencing, and characterization of a full length cDNA coding for a protein involved in energy-coupled Pi transport.  相似文献   

3.
4.
We have used our recently characterized human 3 beta-hydroxy-5-ene steroid dehydrogenase/delta 5-delta 4-isomerase (3 beta-HSD) cDNA as probe to isolate cDNAs encoding bovine 3 beta-HSD from a bovine ovary lambda gtll cDNA library. Nucleotide sequence analysis of two overlapping cDNA clones of 1362 bp and 1536 bp in length predicts a protein of 372 amino acids with a calculated molecular mass of 42,093 (excluding the first Met). The deduced amino acid sequence of bovine 3 beta-HSD displays 79% homology with human 3 beta-HSD while the nucleotide sequence of the coding region shares 82% interspecies similarity. Hybridization of cloned cDNAs to bovine ovary poly(A)+ RNA shows the presence of an approximately 1.7 kb mRNA species.  相似文献   

5.
A cDNA clone for the pre-alpha subunit of the pituitary glycoprotein hormones has been isolated from a bovine pituitary cDNA library through the use of a pool of synthetic oligodeoxynucleotide probes. This clone, designated pB alpha, contains a 564-base pair insert which includes a portion of the signal sequence, the entire coding sequence of the mature protein, and 224 base pairs of the 3'-untranslated sequence. As expected, the nucleotide and amino acid sequence of the mature bovine alpha subunit was homologous to the sequences reported for humans and rodents, with the most extensive homology occurring between bovine and rodents (85-90%). However, a comparison of the 3'-untranslated regions of pre-alpha subunit mRNA from three different mammalian species indicated that in bovine and rat, or in human and rat, these sequences have rapidly diverged, yielding respective homologies of 21 and 36%. In contrast, the sequence homology observed between the 3'-untranslated regions of bovine and human was 79%, which approaches the level of homology shared by their coding sequences. Thus, the conservation of the 3'-untranslated sequence in bovine and human pre-alpha subunit mRNA may be an indication that this region is functionally significant in these two species.  相似文献   

6.
We have determined the cDNA sequence encoding bovine mitochondrial ATP-dependent Lon protease. Since the 5'-end region of the cDNA was highly GC-rich and thus could not be amplified by the 5'-RACE method, a genomic DNA fragment containing an in-frame ATG was isolated and sequenced. The translated amino acid sequence contained 961 amino acids with a calculated molecular weight 106,665. Sequence similarities of the bovine enzyme to human and E. coli orthologs were 92 and 27%, respectively. The N-terminal amino acid sequence seemed to be a mitochondrial targeting signal. To determine the cleavage site of the signal sequence we analyzed the mature enzyme purified from bovine adrenocortical mitochondria. Analysis of CNBr-digested peptides revealed that the N-terminus was heterogeneous. We suggest that nonspecific aminopeptidase might remove several amino acids from the N-terminus after mitochondrial processing peptidase has cleaved Gly(67)-Leu(68) or Leu(68)-Trp(69).  相似文献   

7.
The complete cDNA sequence of bovine coagulation factor V.   总被引:5,自引:0,他引:5  
Lack of availability of a primary structure for bovine factor V has hindered detailed analysis of a vast majority of structure-function correlations on this molecule. To determine the primary structure of bovine factor V, we used liver mRNA as a template for the synthesis of three cDNA libraries. The sequences of seven overlapping cDNA clones infer two bovine factor V variants. Variant 1 results in a 6910-basepair (bp) cDNA including 103 bp of 5'-untranslated sequence, 6633 bp of coding sequence and 171 bp of 3'-untranslated sequence with a putative polyadenylation site. Variant 2 differs only in the size of the coding sequence (6618 bp). The open reading frame translates to factor V consisting of 2211 (or 2206) amino acids including a 28-amino acid signal peptide. Comparison of the amino acid sequences with human factor Va reveals 84% identity for the heavy and 86% for the light chains. In contrast, the B domain (connecting region) exhibits only 59% identity relative to the human molecule. The bovine B domain contains two repeats of a 14-amino acid structure that is contained only once in the human sequence. Bovine factor V lacks one of the nine amino acid repeats and one of the 17 amino acid repeats present in the human B domain. Factor V has little homology to the factor VIII molecule in the B domain. The 17-amino acid repeat missing in bovine factor V allows identification of an 18-amino acid sequence that is homologous to the B domain of human factor VIII. These 18 amino acids may either constitute the unique vestige of a divergent evolution between the B domains of factors V and VIII or reveal the convergent evolution toward a critical epitope involved in the activation of both procofactors.  相似文献   

8.
The nucleotide sequence of human Go alpha was determined from a partial human brain cDNA clone and the sequence of the first two 5' coding exons of a human genomic Go alpha clone. Comparison of this sequence with bovine and rat Go alpha shows greater than 90% homology at the nucleotide and deduced amino acid level. There is 100% identity at the amino acid level for the cholera and pertussis toxin-catalyzed ADP ribosylation sites, the putative guanine nucleotide binding, and the GTP hydrolysis sites.  相似文献   

9.
Abstract: We report here the characterization of a full-length cDNA encoding the human myelin/oligodendrocyte glycoprotein (MOG). The sequence of the coding region of the human MOG cDNA is highly homologous to that of other previously cloned mouse, rat, and bovine MOG cDNAs, but the 3' untranslated region differs by an insertion of an Alu sequence between nucleotides 1,590 and 1,924. Accordingly, northern blot analyzes with cDNA probes corresponding to the coding region or the 3' untranslated Alu-containing sequence revealed a single band of 2 kb, rather than the 1.6 kb of bovine, rat, or mouse MOG cDNA(s). Immunocytochemical analysis of HeLa cells transfected with human MOG cDNA, which was performed using a specific antibody raised against whole MOG, clearly indicated that MOG is expressed at the cell surface as an intrinsic protein. These data are in accordance with the predicted amino acid sequence, which contains a signal peptide and two putative transmembrane domains. The knowledge of the human MOG sequence should facilitate further investigations on its potential as a target antigen in autoimmune demyelinating diseases like multiple sclerosis.  相似文献   

10.
Molecular cloning and sequence analysis of human placental ferredoxin   总被引:2,自引:0,他引:2  
We have characterized several clones specific for the human iron-sulfur protein, ferredoxin, which is involved in electron transfer to mitochondrial cytochromes P-450. Clones were isolated from a human placental cDNA expression library in lambda gt11 by immunoscreening with antibody to bovine adrenal ferredoxin. One clone contained the entire amino acid coding sequence (552 bp) together with 27 bp at the 5'-terminus and approximately 0.9 kb at the 3'-terminus; this form appears to correspond to the major mRNA species of approximately 1.7 kb observed on Northern blots of placental mRNA. The deduced amino acid sequence suggests that human ferredoxin is synthesized as a precursor of 184 amino acids (Mr 19,371) which is cleaved to yield a polypeptide of 124 amino acids (Mr 13,546). The mature protein is highly acidic, and the sequence is very similar to those of bovine and porcine adrenodoxins with the exception of substitutions and variations in length at the C-terminus. The N-terminal precursor segment, on the other hand, is considerably diverged from that determined for bovine adrenodoxin, but is similar in overall basicity and the pattern of occurrence of arginine residues.  相似文献   

11.
A series of overlapping cDNAs coding for mouse prothrombin (coagulation factor II) have been isolated and the composite DNA sequence has been determined. The complete prothrombin cDNA is 1,987 bp in length [excluding the poly(A) tail] and codes for 18 bp of 5' untranslated sequence, an open reading frame coding for 618 amino acids, a stop codon, and a 3' untranslated region of 112 bp followed by a poly(A) tail. The translated amino acid sequence predicts a molecular weight of 66,087, which includes 10 residues of gamma-carboxyglutamic acid. There are five potential N-linked glycosylation sites. Mouse prothrombin is 81.4% and 77.3% identical to the human and bovine proteins, respectively. Comparison of the cDNA coding for mouse prothrombin to the human and bovine cDNAs indicates 79.9% and 76.5% identity, respectively. Amino acid residues important for the structure and function of human prothrombin are conserved in the mouse and bovine proteins. In the adult mouse and rat, prothrombin is primarily synthesized in the liver, where is constitutes 0.07% of total mRNA as determined by solution hybridization analysis. The genetic locus for mouse prothrombin, Cf-2, has been mapped using an interspecies backcross and DNA fragment differences between the two species. The prothrombin locus lies on mouse chromosome 2, 1.8 +/- 1.3 map units proximal to the catalase locus. The gene order in this region is Cen-Acra-Cf-2-Cas-1-A-Tel. This localization extends the proximal boundary of the known region of homology between mouse chromosome 2 and human chromosome 11p from Cas-1 about 2 map units toward the centromere.  相似文献   

12.
J N Masters  G Attardi 《Gene》1983,21(1-2):59-63
The nucleotide sequence of the human dihydrofolic acid reductase (DHFR) reading frame has been derived from the analysis of human DHFR cDNA. This sequence and the corresponding amino acid sequence have been compared with those available for the enzyme and its coding segment from other organisms. There is an 89% nucleotide sequence homology between the human DHFR reading frame and the mouse coding sequence. Furthermore, amino acid-sequence homologies of 74%, 81% and 89% has been found between human DHFR and chicken, bovine and mouse DHFR, respectively.  相似文献   

13.
Cloned cDNAs for human liver serine-pyruvate aminotransferase (Ser-PyrAT) were obtained by screening of a human liver cDNA library with a fragment of cDNA for rat mitochondrial Ser-PyrAT as a probe. Two clones were isolated from 50,000 transformants. Both clones contained approximately 1.5 kb cDNA inserts and were shown to almost completely overlap each other on restriction enzyme mapping and DNA sequencing. The nucleotide sequence of the mRNA coding for human liver Ser-PyrAT was determined from those of the cDNA clones. The mRNA comprises at least 1487 nucleotides, and encodes a polypeptide consisting of 392 amino acid residues with a molecular mass of 43,039 Da. The amino acid composition determined on acid hydrolysis of the purified enzyme showed good agreement with that deduced from the nucleotide sequence of the cDNA. In vitro translation of the mRNA derived from one of the isolated clones, pHspt12, as well as that of mRNA extracted from human liver, yielded a product of 43 kDa which reacted with rabbit anti-(rat mitochondrial Ser-PyrAT) serum. Comparison of the deduced amino acid sequences of human Ser-PyrAT and the mature form of rat mitochondrial Ser-PyrAT revealed 79.3% identity. Although human Ser-PyrAT appears to be synthesized as the mature size, the 5'-noncoding region of human Ser-PyrAT mRNA contains a nucleotide sequence which would encode, if translated, an amino acid sequence similar to that of the N-terminal extension peptide of the precursor for rat mitochondrial Ser-PyrAT.  相似文献   

14.
We report the cloning of the cDNA sequence of the nuclear-encoded NDUFA8 subunit of NADH: ubiquinone oxidoreductase, the first mitochondrial respiratory chain complex. The NDUFA8 open reading frame (ORF) includes 519 bp and encodes 172 amino acids (Mr=20.1 kDa). The human cDNA sequence shows 86.2% identity with the bovine sequence, whereas the human NDUFA8 amino acid sequence is 87.8% similar to its bovine PGIV protein counterpart. Both human and bovine NDUFA8 contain a conserved cysteine motif. Polymerase chain reaction analysis of rodent/human somatic cell hybrids maps the human NDUFA8 gene to chromosome 9. A multiple tissue blot has revealed the highest NDUFA8 mRNA expression in human heart, skeletal muscle, and fetal heart. Mutation analysis of the NDUFA8 fibroblast cDNA in 20 patients with an isolated enzymatic complex I deficiency in cultured skin fibroblasts has revealed two polymorphisms, one within the ORF and the other in the 3’ untranslated region of the NDUFA8 cDNA sequence. The allelic frequency of both polymorphisms was similar in controls and complex-I-deficient patients. Received: 17 April 1998 / Accepted: 22 July 1998  相似文献   

15.
A cDNA coding for the human A-type endothelin receptor (ETA) was cloned from a human placenta cDNA library. The cDNA contained the entire coding sequence for the 427 amino acid protein with a relative Mr of 48,722. The deduced amino acid sequence of the human ETA was, respectively, 94% and 93% homologous with the sequence of bovine ETA and rat ETA, but was only 64% homologous with that of the human ETB receptor. Upon expression in COS-1 cells, the human ETA receptor showed binding activity to ETA, with the highest selectivity to ET-1. Northern blot analysis showed that the mRNA of human placenta ETA consists of one species 5 kilo-nucleotides in length, and the same analysis for the uterus, testis, heart and adrenal gland of Cynomolgus monkey showed that the cognate mRNAs are widely distributed.  相似文献   

16.
Casein kinase II is a widely distributed protein serine/threonine kinase. The holoenzyme appears to be a tetramer, containing two alpha or alpha' subunits (or one of each) and two beta subunits. Complementary DNA clones encoding the subunits of casein kinase II were isolated from a human T-cell lambda gt10 library using cDNA clones isolated from Drosophila melanogaster [Saxena et al. (1987) Mol. Cell. Biol. 7, 3409-3417]. One of the human cDNA clones (hT4.1) was 2.2 kb long, including a coding region of 1176 bp preceded by 156 bp (5' untranslated region) and followed by 871 bp (3' untranslated region). The hT4.1 clone was nearly identical in size and sequence with a cDNA clone from HepG2 human hepatoma cultured cells [Meisner et al. (1989) Biochemistry 28, 4072-4076]. Another of the human T-cell cDNA clones (hT9.1) was 1.8 kb long, containing a coding region of 1053 bp preceded by 171 bp (5' untranslated region) and followed by 550 bp (3' untranslated region). Amino acid sequences deduced from these two cDNA clones were about 85% identical. Most of the difference between the two encoded polypeptides was in the carboxy-terminal region, but heterogeneity was distributed throughout the molecules. Partial amino acid sequence was determined in a mixture of alpha and alpha' subunits from bovine lung casein kinase II. The bovine sequences aligned with the 2 human cDNA-encoded polypeptides with only 2 discrepancies out of 535 amino acid positions. This confirmed that the two human T-cell cDNA clones encoded the alpha and alpha' subunits of casein kinase II. Microsequence data determined from separated preparations of bovine casein kinase II alpha subunit and alpha' subunit [Litchfield et al. (1990) J. Biol. Chem. 265, 7638-7644] confirmed that hT4.1 encoded the alpha subunit and hT9.1 encoded the alpha' subunit. These studies show that there are two distinct catalytic subunits for casein kinase II (alpha and alpha') and that the sequence of these subunits is largely conserved between the bovine and the human.  相似文献   

17.
Clones encoding the proteolipid subunit 9 of the mitochondrial ATPase complex have been isolated from a lambda gt10 library of human liver cDNA sequences, using a probe of Neurospora crassa cDNA encoding subunit 9. From nucleotide sequence analysis it is concluded that the amino acid sequence of mature human subunit 9 is identical to that of its bovine counterpart. By comparing the sequence of two cDNA clones (denoted human 1 and 2) to those of two bovine cDNA clones (denoted P1 and P2) recently described by Gay and Walker (EMBO J. 4, 3519-3524, 1985) it is evident that there are close sequence relationships between human 1 and bovine P1, and between human 2 and bovine P2, although both human clones are truncated at their 5'-ends. Thus, as in bovine cells there appears to be at least two human genes encoding subunit 9.  相似文献   

18.
While attempting to isolate a cDNA clone for the catalytic subunit of the bovine cAMP-dependent protein kinase, we have isolated cDNAs which code for a protein slightly different than the known amino acid sequence. The alternate cDNA was identified by screening a bovine pituitary cDNA library using synthetic oligonucleotides predicted from the known amino acid sequence of the catalytic subunit. The cDNA which we identified, encodes a protein which is 93% identical to the known amino acid sequence of the bovine catalytic subunit. It seems likely that this cDNA represents a previously undiscovered catalytic subunit of the cAMP-dependent protein kinase. The mRNA for the alternate catalytic subunit is different in size from the mRNA coding for the previously known catalytic subunit and also has a different tissue distribution. These findings suggest that there are at least two different genes for the catalytic subunit. The differences in amino acid sequence and tissue distribution suggest the possibility of important functional differences in the two enzymes.  相似文献   

19.
The human plasma metallo-protease carboxypeptidase N of Mr 280,000 consists of two small, enzymatically active subunits of Mr 50,000 and two large subunits. Only the large subunits are glycosylated. They may have a function in stabilizing the complex in plasma. The N-terminal sequence of the small subunit was determined from the isolated protein and used to specify a unique 59-mer oligonucleotide probe. A cDNA clone of 1.7 kbp containing the entire coding sequence of the small subunit of carboxypeptidase N was isolated from a human-liver cDNA library. The cDNA clone encodes a signal sequence of 20 amino acids and the 438 amino acids of the mature subunit. There is a remarkable primary structure similarity of 49% to bovine carboxypeptidase E (enkephalin convertase). A more distant relationship to the bovine pancreatic, digestive carboxypeptidases A and B or even to the metallo-endopeptidases is based mainly on the occurrence of conserved, mechanistically important residues.  相似文献   

20.
The cDNA coding for the signal peptide of rat liver mitochondrial aldehyde dehydrogenase was sequenced. The deduced amino acid sequence of the signal peptide was MLRAALSTARRGPRLSRLL. From this sequence an amphiphilic helix which had a high hydrophobic moment could be constructed. A comparison to the published cDNA sequence of human mitochondrial aldehyde dehydrogenase revealed great sequence identity and allowed us to make some predictions regarding the primary structure of the human signal peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号