首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Prostate smooth muscle cells (pSMCs) are capable of responding to inflammatory stimuli by secreting proinflammatory products, which causes pSMCs to undergo dedifferentiation. Although it has been proposed that androgens decrease proinflammatory molecules in many cells and under various conditions, the role of testosterone in the prostate inflammatory microenvironment is still unclear. Therefore, our aim was to evaluate if testosterone was able to modulate the pSMCs response to bacterial LPS by stimulating primary pSMC cultures, containing testosterone or vehicle, with LPS (1 or 10 µg/ml) for 24–48 h. The LPS challenge induced pSMCs dedifferentiation as evidenced by a decrease of calponin and alpha smooth muscle actin along with an increase of vimentin in a dose‐dependent manner, whereas testosterone abrogated these alterations. Additionally, an ultrastructural analysis showed that pSMCs acquired a secretory profile after LPS and developed proteinopoietic organelles, while pSMCs preincubated with testosterone maintained a more differentiated phenotype. Testosterone downregulated the expression of surface TLR4 in control cells and inhibited any increase after LPS treatment. Moreover, testosterone prevented IκB‐α degradation and the LPS‐induced NF‐κB nuclear translocation. Testosterone also decreased TNF‐α and IL6 production by pSMCs after LPS as quantified by ELISA. Finally, we observed that testosterone inhibited the induction of pSMCs proliferation incited by LPS. Taken together, these results indicate that testosterone reduced the proinflammatory pSMCs response to LPS, with these cells being less reactive in the presence of androgens. In this context, testosterone might have a homeostatic role by contributing to preserve a contractile phenotype on pSMCs under inflammatory conditions. J. Cell. Physiol. 228: 1551–1560, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
6.
7.
The vascular endothelium plays a critical role in vascular homeostasis. Inflammatory cytokines and non-laminar blood flow induce endothelial dysfunction and confer a pro-adhesive and pro-thrombotic phenotype. Therefore, identification of factors that mediate the effects of these stimuli on endothelial function is of considerable interest. Kruppel-like factor 4 expression has been documented in endothelial cells, but a function has not been described. In this communication we describe the expression in vitro and in vivo of Kruppel-like factor 4 in human and mouse endothelial cells. Furthermore, we demonstrate that endothelial Kruppel-like factor 4 is induced by pro-inflammatory stimuli and shear stress. Overexpression of Kruppel-like factor 4 induces expression of multiple anti-inflammatory and anti-thrombotic factors including endothelial nitric-oxide synthase and thrombomodulin, whereas knockdown of Kruppellike factor 4 leads to enhancement of tumor necrosis factor alpha-induced vascular cell adhesion molecule-1 and tissue factor expression. The functional importance of Kruppel-like factor 4 is verified by demonstrating that Kruppel-like factor 4 expression markedly decreases inflammatory cell adhesion to the endothelial surface and prolongs clotting time under inflammatory states. Kruppel-like factor 4 differentially regulates the promoter activity of pro- and anti-inflammatory genes in a manner consistent with its anti-inflammatory function. These data implicate Kruppel-like factor 4 as a novel regulator of endothelial activation in response to pro-inflammatory stimuli.  相似文献   

8.
Phenotypic modulation of smooth muscle cells (SMC) involves dramatic changes in expression and organization of contractile and cytoskeletal proteins, but little is known of how this process is regulated. The present study used a cell culture model to investigate the possible involvement of RhoA, a known regulator of the actin cytoskeleton. In rabbit aortic SMC seeded into primary culture at moderate density, Rho activation was high at two functionally distinct time-points, first as cells modulated to the "synthetic" phenotype, and again upon confluence and return to the "contractile" phenotype. Rho expression increased with time, such that maximal expression occurred upon return to the contractile state. Transient transfection of synthetic state cells with constitutively active RhoA (Val14RhoA) caused a reduction in cell size and reorganization of cytoskeletal proteins to resemble that of the contractile phenotype. Actin and myosin filaments were tightly packed and highly organised while vimentin localised to the perinuclear region; focal adhesions were enlarged and concentrated at the cell periphery. Conversely, inhibition of endogenous Rho by C3 exoenzyme resulted in complete loss of contractile filaments without affecting vimentin distribution; focal adhesions were reduced in size and number. Treatment of synthetic state SMC with known regulators of SMC phenotype, heparin and thrombin, caused a modest increase in Rho activation. Long-term confluence and serum deprivation induced cells to return to a more contractile phenotype and this was augmented by heparin and thrombin. The results implicate RhoA for a role in regulating SMC phenotype and further show that activation of Rho by heparin and thrombin correlates with the ability of these factors to promote the contractile phenotype.  相似文献   

9.
10.
11.
12.
Vascular smooth muscle cell activation and growth by 4-hydroxynonenal   总被引:4,自引:0,他引:4  
The present study examines the signal transduction mechanism that is involved in the growth of vascular smooth muscle cells exposed to 4-hydroxynonenal (HNE) in vitro. This aldehyde component of oxidized low-density lipoprotein has been identified in atherosclerotic lesion. Exposure to HNE caused ERK, JNK, and p38 MAP kinase activation as well as the induction of c-fos and c-jun gene expression. AP-1 activity was also significantly induced by HNE treatment. These intracellular activities appear to be the mechanism of HNE-caused mitogenesis. Indeed, HNE induced vascular smooth muscle cell proliferation as determened by Alamar-Blue assay and stimulated DNA synthesis as determined by bromodeoxyuridine incorporation. These observations are consistent with a role of lipid peroxidation products in vascular smooth muscle cell growth in atherogenesis.  相似文献   

13.
Intestinal mucosal cells and invading leukocytes produce inappropriate levels of cytokines and chemokines in human colitis. However, smooth muscle cells of the airway and vasculature also synthesize cytokines and chemokines. To determine whether human colonic myocytes can synthesize proinflammatory mediators, strips of circular smooth muscle and smooth muscle cells were isolated from human colon. Myocytes and muscle strips were stimulated with 10 ng/ml of IL-1beta, TNF-alpha, and IFN-gamma, respectively. Expression of mRNA for IL-1beta, IL-6, IL-8, and cyclooxygenase-2 (COX-2) was induced within 2 h and continued to increase for 8-12 h. Regulated on activation, normal T cell-expressed and -secreted (RANTES) mRNA expression was slower, appearing at 8 h and increasing linearly through 20 h. Expression of all five mRNAs was inhibited by 0.1 microM MG-132, a proteosome inhibitor that blocks NF-kappaB activation. Expression of IL-1beta, IL-6, IL-8, and COX-2 mRNA was reduced by 30 microM PP1, an Src family tyrosine kinase inhibitor, and by 25 microM SB-203580, a p38 MAPK inhibitor. MAPK/extracellular regulated kinase-1 inhibitor PD-98059 (25 microM) was much less effective. In conclusion, human colonic smooth muscle cells can synthesize and secrete interleukins (IL-1beta and IL-6) and chemokines (IL-8 and RANTES) and upregulate expression of COX-2. Regulation of cytokine, chemokine, and COX-2 mRNA depends on multiple signaling pathways, including Src-family kinases, extracellular regulated kinase, p38 MAPKs, and NF-kappaB. SB-203580 was a consistent, efficacious inhibitor of inflammatory gene expression, suggesting an important role of p38 MAPK in synthetic functions of human colonic smooth muscle.  相似文献   

14.
Apoptosis of smooth muscle cells is a common feature of vascular lesions but its pathophysiological significance is not known. We demonstrate that signals initiated by regulated Fas-associated death domain protein overexpression in rat vascular smooth muscle cells in the carotid artery induce expression of monocyte-chemoattractant protein-1 and interleukin-8, and cause massive immigration of macrophages in vivo. These chemokines, and a specific set of other pro-inflammatory genes, are also upregulated in human vascular smooth muscle cells during Fas-induced apoptosis, in part through a process that requires interleukin-1alpha activation. Induction of a pro-inflammatory program by apoptotic vascular smooth muscle cells may thus contribute to the pathogenesis of vascular disease.  相似文献   

15.
16.
17.
18.
19.
20.
The expression of contractile proteins in vascular smooth muscle cells is controlled by still poorly defined mechanisms. A thrombin-inducible expression of smooth muscle-specific alpha-actin and myosin heavy chain requires transactivation of the epidermal growth factor (EGF) receptor and a biphasic activation of ERK1/2. Here we demonstrate that the sustained second phase of ERK1/2 phosphorylation requires de novo RNA and protein synthesis. Depolymerization of the actin cytoskeleton by cytochalasin D or disruption of transit between the endoplasmic reticulum and the Golgi apparatus by brefeldin A prevented the second phase of ERK1/2 phosphorylation. We thus conclude that synthesis and trafficking of a plasma membrane-resident protein may be critical intermediates. Analysis of the expression of protease-activated receptor 1, heparin-binding EGF (HB-EGF), and the EGF receptor revealed that pro-HB-EGF is significantly up-regulated upon thrombin stimulation. The kinetic of HB-EGF expression closely matched that of the second phase of ERK1/2 phosphorylation. Because inhibition of matrix metalloproteases or of the EGF receptor strongly attenuated the late phase of ERK1/2 phosphorylation, the second phase of ERK1/2 activation is primarily relayed by shedding of EGF receptor ligands. The small interfering RNA-mediated knockdown of HB-EGF expression confirmed an important role of HB-EGF expression in triggering the second phase of ERK1/2 activation. Confocal imaging of a yellow fluorescent protein-tagged HB-EGF construct demonstrates the rapid plasma membrane integration of the newly synthesized protein. These data imply that the hormonal control of contractile protein expression relies on an intermediate HB-EGF expression to sustain the signaling strength within the Ras/Raf/MEK/ERK cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号