首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 17 novel 2-amino-4-oxo-5-[(substituted phenyl)thio]pyrrolo[2,3-d]pyrimidines were synthesized as potential inhibitors of thymidylate synthase (TS) and as antitumor agents. The analogues contain a variety of electron withdrawing substituents on the phenyl ring of the side chain and were evaluated as inhibitors of human TS (hTS) and Escherichia coli TS and of human and E. coli dihydrofolate reductase (DHFR). The analogues 14, 17, and 18 were potent inhibitors of hTS with IC50 values of 0.28, 0.21, and 0.22 microM, respectively, and were more potent than the clinically used ZD1694, 2 and LY231514, 3 against human TS.  相似文献   

2.
Two classical antifolates, a 2,4-diamino-5-substituted furo[2,3-d]pyrimidine and a 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine, were synthesized as potential inhibitors of dihydrofolate reductase (DHFR) and thymidylate synthase (TS). The syntheses were accomplished by condensation of 2,6-diamino-3(H)-4-oxo-pyrimidine with alpha-chloro-ketone 21 to afford two key intermediates 23 and 24, followed by hydrolysis, coupling with l-glutamate diethyl ester and saponification of the diethyl ester to afford the classical antifolates 13 and 14. Compounds 13 and 14 with a single carbon atom bridge are both substrates for folylpoly-gamma-glutamate synthetase (FPGS), the enzyme responsible for forming critical poly-gamma-glutamate antifolate metabolites with increased potency and/or increased cell retention. Compound 14 is a highly efficient FPGS substrate demonstrating that 2,4-diamino-5-substituted furo[2,3-d]pyrimidines are important lead structures for the design of antifolates with FPGS substrate activity. It retains inhibitory potency for DHFR and TS compared to the two atom bridged analog 5. Compound 13 is a poor inhibitor of purified DHFR and TS, and both 13 and 14 are poor inhibitors of the growth of CCRF-CEM human leukemia cells in culture, indicating that single carbon bridged compounds in these series though conducive to FPGS substrate activity were not potent inhibitors.  相似文献   

3.
Cryptosporidium is the causative agent of a gastrointestinal disease, cryptosporidiosis, which is often fatal in immunocompromised individuals and children. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer, bacterial infections, and malaria. Cryptosporidium hominis has a bifunctional thymidylate synthase and dihydrofolate reductase enzyme, compared to separate enzymes in the host. We evaluated lead compound 1 from a novel series of antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines as an inhibitor of Cryptosporidium hominis thymidylate synthase with selectivity over the human enzyme. Complementing the enzyme inhibition compound 1 also has anti-cryptosporidial activity in cell culture. A crystal structure with compound 1 bound to the TS active site is discussed in terms of several van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate (TS), cofactor NADPH and inhibitor methotrexate (DHFR). Another crystal structure in complex with compound 1 bound in both the TS and DHFR active sites is also reported here. The crystal structures provide clues for analog design and for the design of ChTS–DHFR specific inhibitors.  相似文献   

4.
The crystal structures of a deletion mutant of human thymidylate synthase (TS) and its ternary complex with dUMP and Tomudex have been determined at 2.0 A and 2.5 A resolution, respectively. The mutant TS, which lacks 23 residues near the amino terminus, is as active as the wild-type enzyme. The ternary complex is observed in the open conformation, similar to that of the free enzyme and to that of the ternary complex of rat TS with the same ligands. This is in contrast to Escherichia coli TS, where the ternary complex with Tomudex and dUMP is observed in the closed conformation. While the ligands interact with each other in identical fashion regardless of the enzyme conformation, they are displaced by about 1.0 A away from the catalytic cysteine in the open conformation. As a result, the covalent bond between the catalytic cysteine sulfhydryl and the base of dUMP, which is the first step in the reaction mechanism of TS and is observed in all ternary complexes of the E. coli enzyme, is not formed. This displacement results from differences in the interactions between Tomudex and the protein that are caused by differences in the environment of the glutamyl tail of the Tomudex molecule. Despite the absence of the closed conformation, Tomudex inhibits human TS ten-fold more strongly than E. coli TS. These results suggest that formation of a covalent bond between the catalytic cysteine and the substrate dUMP is not required for effective inhibition of human TS by cofactor analogs and could have implications for drug design by eliminating this as a condition for lead compounds.  相似文献   

5.
Classical antifolates (4-7) with a tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold and a flexible and rigid benzoylglutamate were synthesized as dual thymidylate synthase (TS) and dihydrofolate reductase (DHFR) inhibitors. Oxidative aromatization of ethyl 2-amino-4-methyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (±)-9 to ethyl 2-amino-4-methyl-1-benzothiophene-3-carboxylate 10 with 10% Pd/C was a key synthetic step. Compounds with 2-CH? substituents inhibited human (h) TS (IC?? =0.26-0.8 μM), but not hDHFR. Substitution of the 2-CH? with a 2-NH? increases hTS inhibition by more than 10-fold and also affords excellent hDHFR inhibition (IC?? = 0.09-0.1 μM). This study shows that the tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold is highly conducive to single hTS or dual hTS-hDHFR inhibition depending on the 2-position substituents. The X-ray crystal structures of 6 and 7 with hDHFR reveal, for the first time, that tricyclics 6 and 7 bind with the benzo[4,5]thieno[2,3-d]pyrimidine ring in the folate binding mode with the thieno S mimicking the 4-amino of methotrexate.  相似文献   

6.
Phan J  Koli S  Minor W  Dunlap RB  Berger SH  Lebioda L 《Biochemistry》2001,40(7):1897-1902
Thymidylate synthase (TS) is a major target in the chemotherapy of colorectal cancer and some other neoplasms while raltitrexed (Tomudex, ZD1694) is an antifolate inhibitor of TS approved for clinical use in several European countries. The crystal structure of the complex between recombinant human TS, dUMP, and raltitrexed has been determined at 1.9 A resolution. In contrast to the situation observed in the analogous complex of the rat TS, the enzyme is in the closed conformation and a covalent bond between the catalytic Cys 195 and dUMP is present in both subunits. This mode of ligand binding is similar to that of the analogous complex of the Escherichia coli enzyme. The only major differences observed are a direct hydrogen bond between His 196 and the O4 atom of dUMP and repositioning of the side chain of Tyr 94 by about 2 A. The thiophene ring of the drug is disordered between two parallel positions.  相似文献   

7.
Enzymes involved in thymidylate biosynthesis, thymidylate synthase (TS), and dihydrofolate reductase (DHFR) are well-known targets in cancer chemotherapy. In this study, we demonstrated for the first time, that human TS and DHFR form a strong complex in vitro and co-localize in human normal and colon cancer cell cytoplasm and nucleus. Treatment of cancer cells with methotrexate or 5-fluorouracil did not affect the distribution of either enzyme within the cells. However, 5-FU, but not MTX, lowered the presence of DHFR-TS complex in the nucleus by 2.5-fold. The results may suggest the sequestering of TS by FdUMP in the cytoplasm and thereby affecting the translocation of DHFR-TS complex to the nucleus. Providing a strong likelihood of DHFR-TS complex formation in vivo, the latter complex is a potential new drug target in cancer therapy. In this paper, known 3D structures of human TS and human DHFR, and some protozoan bifunctional DHFR-TS structures as templates, are used to build an in silico model of human DHFR–TS complex structure, consisting of one TS dimer and two DHFR monomers. This complex structure may serve as an initial 3D drug target model for prospective inhibitors targeting interfaces between the DHFR and TS enzymes.  相似文献   

8.
Thymidylate synthase (TS) converts dUMP to dTMP by reductive methylation, where 5,10-methylenetetrahydrofolate is the source of both the methylene group and reducing equivalents. The mechanism of this reaction has been extensively studied, mainly using the enzyme from Escherichia coli. Bacillus subtilis contains two genes for TSs, ThyA and ThyB. The ThyB enzyme is very similar to other bacterial TSs, but the ThyA enzyme is quite different, both in sequence and activity. In ThyA TS, the active site histidine is replaced by valine. In addition, the B. subtilis enzyme has a 2.4-fold greater k(cat) than the E. coli enzyme. The structure of B. subtilis thymidylate synthase in a ternary complex with 5-fluoro-dUMP and 5,10-methylenetetrahydrofolate has been determined to 2.5 A resolution. Overall, the structure of B. subtilis TS (ThyA) is similar to that of the E. coli enzyme. However, there are significant differences in the structures of two loops, the dimer interface and the details of the active site. The effects of the replacement of histidine by valine and a serine to glutamine substitution in the active site area, and the addition of a loop over the carboxy terminus may account for the differences in k(cat) found between the two enzymes.  相似文献   

9.
A Kamb  J S Finer-Moore  R M Stroud 《Biochemistry》1992,31(51):12876-12884
We have solved crystal structures of two complexes with Escherichia coli thymidylate synthase (TS) bound either to the cofactor analog N10-propargyl-5,8-dideazafolate (CB3717) or to a tighter binding polygutamyl derivative of CB3717. These structures suggest that cofactor binding alone is sufficient to induce the conformational change in TS; dUMP binding is not required. Because polyglutamyl folates are the primary cofactor form in vivo, and because they can bind more tightly than dUMP to TS, these structures may represent a key intermediate along the TS reaction pathway. These structures further suggest that the dUMP binding site is accessible in the TS-cofactor analog binary complexes. Conformational flexibility of the binary complex may permit dUMP to enter the active site of TS while the cofactor is bound. Alternatively, dUMP may enter the active site from the opposite side that the cofactor appears to enter; that is, through a portal flanked by arginines that also coordinate the phosphate group in the active site. Entry of dUMP through this portal may allow dUMP to bind to a TS-cofactor binary complex in which the complex has completed its conformational transition to the catalytically competent structure.  相似文献   

10.
Expression of human thymidylate synthase in Escherichia coli   总被引:4,自引:0,他引:4  
A cDNA clone encoding thymidylate synthase (TS) has been isolated from a human T-cell library and modified in the 5'-untranslated region to incorporate several unique cloning sites. The gene has been cloned as a cassette into several Escherichia coli expression vectors which did not provide detectable amounts of the enzyme. A successful approach used a constitutive E. coli expression vector developed for the enzyme from Lactobacillus casei. A 115-base pair 5'-untranslated region from the L. casei TS which contains a ribosomal binding site and other regulatory sequences has been fused to the coding region of the human TS gene to provide a construct that is expressed in E. coli. The level of expression was further enhanced by altering the nucleotide sequence of the first 90 base pairs to accommodate common codon use in E. coli. In our best expression system, catalytically active human TS is expressed to a level that represents about 1.6% of the total soluble protein. The recombinant human TS has been purified and characterized; except for the presence of an amino-terminal blocking group, the enzyme has physical and kinetic properties similar to the enzyme isolated from human cells.  相似文献   

11.
The crystal structures of two human dihydrofolate reductase (hDHFR) ternary complexes, each with bound NADPH cofactor and a lipophilic antifolate inhibitor, have been determined at atomic resolution. The potent inhibitors 6-([5-quinolylamino]methyl)-2,4-diamino-5-methylpyrido[2,3-d]pyrimidine (SRI-9439) and (Z)-6-(2-[2,5-dimethoxyphenyl]ethen-1-yl)-2,4-diamino-5-methylpyrido[2,3-d]pyrimidine (SRI-9662) were developed at Southern Research Institute against Toxoplasma gondii DHFR-thymidylate synthase. The 5-deazapteridine ring of each inhibitor adopts an unusual puckered conformation that enables the formation of identical contacts in the active site. Conversely, the quinoline and dimethoxybenzene moieties exhibit distinct binding characteristics that account for the differences in inhibitory activity. In both structures, a salt-bridge is formed between Arg70 in the active site and Glu44 from a symmetry-related molecule in the crystal lattice that mimics the binding of methotrexate to DHFR.  相似文献   

12.
A novel classical antifolate N-{4-[(2,4-diamino-5-methyl-furo[2,3-d]pyrimidin-6-yl)thio]-benzoyl}-l-glutamic acid 5 and 11 nonclassical antifolates 616 were designed, synthesized, and evaluated as inhibitors of dihydrofolate reductase (DHFR) and thymidylate synthase (TS). The nonclassical compounds 6–16 were synthesized from 20 via oxidative addition of substituted thiophenols using iodine. Peptide coupling of the intermediate acid 21 followed by saponification gave the classical analog 5. Compound 5 is the first example, to our knowledge, of a 2,4-diamino furo[2,3-d]pyrimidine classical antifolate that has inhibitory activity against both human DHFR and human TS. The classical analog 5 was a nanomolar inhibitor and remarkably selective inhibitor of Pneumocystis carinii DHFR and Mycobacterium avium DHFR at 263-fold and 2107-fold, respectively, compared to mammalian DHFR. The nonclassical analogs 6–16 were moderately potent against pathogen DHFR or TS. This study shows that the furo[2,3-d]pyrimidine scaffold is conducive to dual human DHFR-TS inhibitory activity and to high potency and selectivity for pathogen DHFR.  相似文献   

13.
The structures of thymidylate synthase (TS) from Escherichia coli, in ternary complexes with substrate and an analogue of the cofactor, are the basis of a stereochemical model for a key reaction intermediate in the catalyzed reaction. This model is used to compare the reaction chemistry and chirality of the transferred methyl group with structures of the components, to identify those residues that participate, and to propose a stereochemical mechanism for catalysis by TS. Effects of chemical modification of specific amino acid residues and site-directed mutations of residues are correlated with structure and effects on enzyme mechanism. The ordered binding sequence of substrate deoxyuridine monophosphate and methylenetetrahydrofolate can be understood from the structure, where each forms a large part of the binding site for the other. The catalytic site serves to orient the reactants, which are sequestered along with many water molecules within a cavernous active center. Conformational changes during the reaction could involve nearby residues in ways that are not obvious in this complex.  相似文献   

14.
In Plasmodium falciparum, dihydrofolate reductase and thymidylate synthase activities are conferred by a single 70-kDa bifunctional polypeptide (DHFR-TS, dihydrofolate reductase-thymidylate synthase) which assembles into a functional 140-kDa homodimer. In mammals, the two enzymes are smaller distinct molecules encoded on different genes. A 27-kDa amino domain of malarial DHFR-TS is sufficient to provide DHFR activity, but the structural requirements for TS function have not been established. Although the 3'-end of DHFR-TS has high homology to TS sequences from other species, expression of this protein fragment failed to yield active TS enzyme, and it failed to complement TS(-) Escherichia coli. Unexpectedly, even partial 5'-deletion of full-length DHFR-TS gene abolished TS function on the 3'-end. Thus, it was hypothesized that the amino end of the bifunctional parasite protein plays an important role in TS function. When the 27-kDa amino domain (DHFR) was provided in trans, a previously inactive 40-kDa carboxyl-domain from malarial DHFR-TS regained its TS function. Physical characterization of the "split enzymes" revealed that the 27- and the 40-kDa fragments of DHFR-TS had reassembled into a 140-kDa hybrid complex. Thus, in malarial DHFR-TS, there are physical interactions between the DHFR domain and the TS domain, and these interactions are necessary to obtain a catalytically active TS. Interference with these essential protein-protein interactions could lead to new selective strategies to treat malaria resistant to traditional DHFR-TS inhibitors.  相似文献   

15.
Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. Human thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR) are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA and protein. Their inhibition has found clinical utility as antitumour, antimicrobial and antiprotozoal agents. The aim of this study is to elucidate the factors which are responsible for the potent inhibition of hTS and hDHFR, respectively, through the detailed analysis of the binding modes of dual TS–DHFR inhibitors at both active sites using molecular docking study. Moreover, this study is also accompanied by the exploration of electronic features of dual inhibitors via the density functional theory approach. This study demonstrates that appropriate substitution at the sixth position of thieno[2,3-d]pyrimidines moiety in non-classical dual inhibitors of hTS and hDHFR plays a key role in the inhibition of hTS and hDHFR enzymes. In general, the outcomes of this research exertion will significantly be helpful in drug design for cancer chemotherapy.  相似文献   

16.
The thymidylate synthase (TS) gene was isolated from a genomic Candida albicans library by functional complementation of a Saccharomyces cerevisiae strain deficient in TS. The gene was localized on a 4-kilobase HindIII DNA fragment and was shown to be expressed in a Thy- strain of Escherichia coli. The nucleotide sequence of the TS gene predicted a protein of 315 amino acids with a molecular weight of 36,027. The gene was cloned into a T7 expression vector in E. coli, allowing purification of large amounts of C. albicans TS. It was also purified from a wild-type C. albicans strain. Comparison of several enzyme properties including analysis of amino-terminal amino acid sequences showed the native and cloned C. albicans TS to be the same.  相似文献   

17.
The thymidylate synthase (TS) gene from Lactococcus lactis has been highly expressed in Escherichia coli. The TS protein was purified by sequential chromatography on Q-Sepharose and phenyl-Sepharose. Six grams of cell pellet yielded 140 mg of homogeneous TS. TS is a highly conserved enzyme, and several of the conserved amino acid residues that have been implicated in catalytic function are altered in L. lactis TS. By use of a 3-dimensional homology model, we have predicted covariant changes that might compensate for these differences. With the large amounts of L. lactis TS now available, studies can be pursued to understand the structure-function relationships of this enzyme compared to other TSs and to confirm the presumed roles of the compensatory changes predicted in the homology model.  相似文献   

18.
A novel flavin-dependent thymidylate synthase was identified recently as an essential gene in many archaebacteria and some pathogenic eubacteria. This enzyme, ThyX, is a potential antibacterial drug target, since humans and most eukaryotes lack the thyX gene and depend upon the conventional thymidylate synthase (TS) for their dTMP requirements. We have cloned and overexpressed the thyX gene (Rv2754c) from Mycobacterium tuberculosis in Escherichia coli. The M.tuberculosis ThyX (MtbThyX) enzyme complements the E.coli chi2913 strain that lacks its conventional TS activity. The crystal structure of the homotetrameric MtbThyX was determined in the presence of the cofactor FAD and the substrate analog, 5-bromo-2'-deoxyuridine-5'-monophosphate (BrdUMP). In the active site, which is formed by three monomers, FAD is bound in an extended conformation with the adenosine ring in a deep pocket and BrdUMP in a closed conformation near the isoalloxazine ring. Structure-based mutational studies have revealed a critical role played by residues Lys165 and Arg168 in ThyX activity, possibly by governing access to the carbon atom to be methylated of a totally buried substrate dUMP.  相似文献   

19.
Cryptosporidiosis, a gastrointestinal disease caused by a protozoan Cryptosporidium hominis is often fatal in immunocompromised individuals. There is little clinical data to show that the existing treatment by nitazoxanide and paromomycin is effective in immunocompromised individuals.1, 2 Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer and malaria. A novel series of classical antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines have been evaluated as Cryptosporidium hominis thymidylate synthase (ChTS) inhibitors. Crystal structure in complex with the most potent compound, a 2′-chlorophenyl with a sulfur bridge with a Ki of 8.83 ± 0.67 nM is discussed in terms of several Van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate. Of these interactions, two interactions with the non-conserved residues (A287 and S290) offer an opportunity to develop ChTS specific inhibitors. Compound 6 serves as a lead compound for analog design and its crystal structure provides clues for the design of ChTS specific inhibitors.  相似文献   

20.
A pyrrolo[3,2-d]pyrimidine-based type-II vascular endothelial growth factor receptor 2 (VEGFR2) kinase inhibitor, compound 20d, displayed time-dependent inhibition of the non-phosphorylated catalytic domain of VEGFR2. In contrast, 20d did not show time-dependent inhibition of the phosphorylated enzyme. Dissociation of 20d from non-phosphorylated VEGFR2 was slow and the half-life of the complex was longer than 4h. In contrast, dissociation of 20d from the phosphorylated enzyme was very fast (half-life <5min). A fluorescent tracer based displacement assay and surface plasmon resonance (SPR) analysis confirmed the slow dissociation of 20d from only non-phosphorylated VEGFR2. Thus, activity based and binding kinetic analyses both supported slow dissociation of 20d from only non-phosphorylated VEGFR2. Additionally SPR analysis revealed that association rates were rapid and nearly identical for these two phosphorylation forms of VEGFR2. From these results, the preferential effect of 20d on non-phosphorylated VEGFR2 is dominated by its slow dissociation from the enzyme and this characteristically long residence time may increase its potency in vivo. The present findings may assist in the design of novel type-II kinase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号