首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equimolar mixtures of histones H3 and H4 have been reconstituted onto DNA of nucleosome core size. Two distinct complexes are formed in a relative abundance that depends on the starting ratio of H3 + H4 to DNA. One of these complexes contains two H3-H4 dimers for each DNA molecule, and has a sedimentation coefficient of 7.5S. The other complex contains an octamer consisting of four H3-H4 dimers, and has a sedimentation coefficient of 10.4S. On the basis of these measurements, we conclude that the octamer complex (but not the tetramer complex) is a fully folded, compact structure resembling the nucleosome.  相似文献   

2.
DNA-histone complexes were reconstituted from DNA and acid-extracted core histones and the products were characterized by micrococcal nuclease digestion to examine whether proper nucleosome structure had been reconstituted. No nucleosome structure was produced starting from the mixture of acid-extracted histones and purified DNA in 2 M NaCl-5 M urea, while the reassociation of chromatin by the same procedures was successful. This was due to the inappropriate conformation of acid-extracted histones, which was preserved in 2 M NaCl even in the presence of 5 M urea. If acid-extracted histones were reannealed from the completely denatured state, such as in 5 M urea, 6 M guanidine hydrochloride or 0.6 M NaCl-5 M urea, reconstitution of nucleosome structure was always successful.  相似文献   

3.
It has been demonstrated by digestion studies with micrococcal nuclease that reconstitution of complexes from DNA and a mixture of the four small calf thymus histones H2A, H2B, H3, and H4 leads to subunits closely spaced in a 137 +/- 7-nucleotide-pair register. Subunits isolated from the reconstituted complex contain nearly equimolar amounts of the four histones and sediment at 11.6S. On DNase I digestion both the reconstituted complex and the separated subunits gave rise to series of single-stranded DNA fragments with a 10-nucleotide periodicity. This indicates that the reconstitution leads to subunits very similar to nucleosome cores. Nucleosome cores closely spaced in a 140-nucleotide-pair register were also obtained upon removal of histone H1 from chromatin by dissociation with 0.63 M NaCl and subsequent ultracentrifugation. In reconstitution experiments with all five histones (including histone H1) our procedure did not lead to tandemly arranged nucleosomes containing about 200 nucleotide pairs of DNA. In the presence of EDTA, DNase II cleaved calf thymus nuclei and chromatin at about 200-nucleotide-pair intervals whereas in the presence of Mg2+ cleavage at intervals of approximately half this size was observed. The change in the nature of the cleavage pattern, however, was no longer found after removal of histone H1 from chromatin. This indicates that H1 influences the accessibility of DNase II cleavage sites in chromatin. This finding is discussed with respect to the influence of histone H1 on chromatin superstructure.  相似文献   

4.
Specific folding and contraction of DNA by histones H3 and H4.   总被引:26,自引:0,他引:26  
M Bina-Stein  R T Simpson 《Cell》1977,11(3):609-618
We demonstrate that the arginine-rich histones H3 and H4 can introduce torsional constraints on closed circular DNA with a concomitant compaction of the nucleic acid. SV40 DNA I complexed with H3 and H4 appears relaxed in electron micrographs and contains particles of 75 +/- 10 A in diameter along the DNA. SV40 DNA I is contracted 2.75 +/- 0.25 fold by all the four smaller histones and 2.6 +/- 0.4 fold by H3 and H4 alone. The arginine-rich histones can cause the topological equivalent of unwinding the DNA close to one Watson-Crick turn per particle formed. Spherical nucleoprotein complexes morphologically similar to isolated nu bodies or nucleosomes are obtained by association of H3 and H4 with 140 base pair length DNA isolated from chromatin core particles. These reconstituted particles sediment at 9.8S, as compared to 10.8S for native core particles, and contain a tetramer of the arginine-rich histones. None of these specific alterations in DNA structure is seen om complexing the slightly lysine rich-histones H2A and H2B to DNA. Our data provide further evidence indicating that the arginine-rich histones are the major determinants of the architecture of DNA within the chromatin core particle.  相似文献   

5.
6.
We have examined the role played by various histones in the organization of the DNA of the nucleosome, using staphylococcal nuclease as a probe of DNA conformation. When this enzyme attacks chromatin, a series of fragments evenly spaced at 10 base pair intervals is generated, reflecting the histone-DNA interactions within the nucleosome structure. To determine what contribution the various histones make to DNA organization, we have studied the staphylococcal nuclease digestion patterns of complexes of DNA with purified histones.Virtually all possible combinations of homogeneous histones were reconstituted onto DNA. Exhaustive digestion of a complex containing the four histones H2A, H2B, H3, and H4 yields a DNA fragment pattern very similar to that of whole chromatin. The only other combinations of histones capable of inducing chromatin-like DNA organization are H2A/H2B/H4 and those mixtures containing both H3 and H4. From an examination of the kinetics of digestion of H3/H4 reconstitutes, we conclude that although the other histones have a role in DNA organization within the nucleosome, the arginine-rich histone pair, H3/H4, can organize DNA segments the length of the nucleosome core in the absence of all other histones.  相似文献   

7.
Complexes of viroids with histones and other proteins.   总被引:9,自引:2,他引:7       下载免费PDF全文
Complexes of potato spindle tuber viroid (PSTV) with nuclear proteins have been studied by in vitro reconstitution of the complexes and by isolation and characterization of in vivo complexes under non-dissociating conditions. For in vitro reconstitution, nuclear proteins were separated by SDS-gel-electrophoresis, renatured and blotted onto nitrocellulose filters, and incubated with viroid. The viroid-protein complexes were crosslinked covalently, and the viroid containing protein bands were detected by northern hybridization with a radioactive cDNA probe. The histones, a 41,000 dalton protein and to a small extent a 31,000 dalton protein were found in complexes with viroids. Raising the strength to 0.4 M NaCl destroys the complexes with the 41,000 dalton proteins but not those with the histones. From nucleoli, which are known to obtain the majority of viroids under non-dissociating conditions (Schumacher et al., (1983) EMBO J. 2, 1549-1555), a nucleosomal fraction was prepared. Viroids were found predominantly in this nucleosomal fraction. They are bound in a complex of 12-15 svedberg units.  相似文献   

8.
In this report, we introduce the use of DNA-cellulose chromatography for evaluating the strength of binding of histones to DNA under a variety of conditions. We have found that histones added directly to DNA-cellulose at physiological salt concentrations bind relatively weakly, with all histones eluting together at about 0.5 M NaCl when a salt gradient is applied. However, much tighter binding of the four nucleosomal histones to DNA-cellulose is obtained if gradual histone-DNA reconstitution conditions are used. In this case, the binding of histones H2A, H2B, H3, and H4 to DNA-cellulose closely resembles their binding to native chromatin. The nativeness of the binding is indicated both by the distinctive sodium chloride elution profile of these histones from DNA-cellulose and by their relative resistance to trypsin digestion when DNA-bound. The binding to DNA-cellulose of histones H2A, H2B, H3, and H4, which have had the first 20 to 30 amino acid residues removed from their NH2 termini, is indistinguishable from the binding to DNA-cellulose of the same intact histones, as judged by their salt elution profile. Thus, even though the NH2 termini contain 40 to 50% of the positively charged amino acid residues (thought to interact with the DNA backbone), a major contribution to the DNA binding comes from the remainder of the histone molecule. Finally, we have discovered that histones can form a "nucleosome-like" complex on single-stranded DNA. The same complex does not appear to form on RNA. Histones H3 and H4 play a predominant role in organizing this histone complex on single-stranded DNA, as they do on double-stranded DNA in normal nucleosomes. We suggest that, in the cell nucleus, nucleosomal structures may form transiently on single strands of DNA, as DNA and RNA polymerases traverse DNA packaged by histones.  相似文献   

9.
The purpose of the study presented was to investigate the effect of the extraction of histones on the template activity of DNA, measured by the autoradiographically evaluated intensity of [3H]actinomycin D ([3H]AMD) binding. The study was carried out on nuclei isolated from the root meristem of Pinus silvestris. Histones were removed selectively from them and reconstituted in the nuclei deprived of these proteins. The greatest rise in radioactivity was found after the extraction of the arginine fraction and that of lysine-rich and moderately lysine-rich fractions removed together, whereas the extraction of the lysine-rich fraction does not cause such a considerable increase in radioactivity. The reconstitution of particular histone fractions induced a fall in radioactivity to the level of controls in all the cases examined. No [3H]AMD binding to the nucleolus was found. The extraction of lysine histones results in the decondensation of chromatin and their reconstitution in the formation of complexes of compact chromatin.  相似文献   

10.
Reconstitution of chromatin: assembly of the nucleosome.   总被引:8,自引:5,他引:3       下载免费PDF全文
The order of reassociation of the four histones H2a, H2b, H3 and H4 to the DNA during the reconstitution of chromatin was determined. At each step of the reconstitution the DNA and associated histones were separated from the free histones by centrifugation in a glycerol gradient. The unbound and reassociated histones were analysed by gel electrophoresis and the histone-DNA complexes characterized by circular dichroism and electron microscopy. We show that H3 and H4 bind first to the DNA between 1.2 M NaCl and 0.85 M NaCl and impose a nucleosome like structure; in a second step histones H2a and H2b are placed around this kernel to complete the nucleosome.  相似文献   

11.
In non-denaturing low ionic strength gels, the titration of core DNA with H2A,H2B produces five well-defined bands. Quantitative densitometry and cross-linking experiments indicate that these bands are due to the successive binding of H2A,H2B dimers to core DNA. Only two bands are obtained with DNA-(H3,H4) samples. The slower of these bands is broad and presumably corresponds to two complexes containing one and two H3,H4 tetramers, respectively. In gels of higher ionic strength, DNA-(H2A,H2B) samples produce an ill-defined band, suggesting that the lifetime of the complexes containing H2A,H2B is relatively short. However, the low intensity of the free DNA band observed in these gels indicates that most of the DNA is associated with H2A,H2B. In agreement with this, our results obtained using different techniques (sedimentation, cross-linking, trypsin and nuclease digestions, and thermal denaturation) demonstrate that the association of H2A,H2B with core DNA occurs in free solution in both the absence and presence of NaCl (0.1 to 0.2 M). The low mobilities of DNA-(H2A,H2B) complexes, together with sedimentation and DNase I digestion results, indicate that the DNA in these complexes is not folded into the compact structure found in the core particle. Furthermore, non-denaturing gels have been used to study the dynamic properties of DNA-(H2A,H2B) and DNA-(H3,H4) complexes in 0.2 M-NaCl. Our results show that: (1) H2A,H2B and H3,H4 can associate, respectively, with DNA-(H3,H4) and DNA-(H2A,H2B) to produce complexes containing the four core histones; (2) DNA-(H2A,H2B) and DNA-(H3,H4) are able to transfer histones to free core DNA; (3) an exchange of histone pairs takes place between DNA-(H2A,H2B) and DNA-(H3,H4) and produces complexes with the same histone composition as that of the normal nucleosome core particle; and (4) although both histone pairs can exchange, histones H2A,H2B show a higher tendency than H3,H4 to migrate from one incomplete core particle to another. The complexes produced in these reactions have the same compact structure as reconstituted core particles containing the four core histones. Our kinetic results are consistent with a reaction mechanism in which the transfer of histones involves direct contacts between the reacting complexes. The possible participation of these spontaneous reactions on the mechanism of nucleosome assembly is discussed.  相似文献   

12.
The structural role of histone H2B from sea urchin sperm (H2Bsp) has been examined in experiments on reconstitution of chromatin from DNA and core histones taken in three variants: (1) four core histones from sea urchin sperm; (2) four core histones from calf thymus; (3) (H3, H4, H2A) from calf thymus and H2Bsp. It is shown that H2Bsp when present in reconstituted chromatin induces its aggregation. Fidelity of the reconstitution of nucleosomes has been tested using DNase I probe, one- and two-dimensional electrophoresis and electron microscopy. The reconstitutes that contain H2Bsp appear under electron microscope mainly as regular closely spaced large granules, about 450 A in diameter, which are very similar to the granules found in "native" sea urchin sperm chromatin. The reconstitutes formed by four core histones from calf thymus appear as randomly arranged particles, about 100 A in diameter. We conclude that histone H2Bsp participates in interactions between nucleosomes and is involved in the formation of the condensed supranucleosomal structure in sea urchin sperm chromatin.  相似文献   

13.
The experiments on reconstruction of chromatin (without H1) from DNA and histone octamer containing either H2B from sea urchin sperm (H2B-S) or H2B from calf thymus are reported. It has been shown that H2B-S affects the mode of interaction of histones with DNA during the reconstitution of nucleosomal particles on one hand and on the other hand H2B-S plays a major role in the interactions of reconstituted mononucleosomes. These interactions result in supranucleosomal structures.  相似文献   

14.
Nucleosomes reconstituted from bacterially expressed histones are useful for functional and structural analyses of histone variants, histone mutants, and histone post-translational modifications. In the present study, we developed a new method for the expression and purification of recombinant human histones. The human histone H2A, H2B, and H3 genes were expressed well in Escherichia coli cells, but the human histone H4 gene was poorly expressed. Therefore, we designed a new histone H4 gene with codons optimized for the E. coli expression system and constructed the H4 gene by chemically synthesized oligodeoxyribonucleotides. The recombinant human histones were expressed as hexahistidine-tagged proteins and were purified by one-step chromatography with nickel-nitrilotriacetic acid agarose in the presence of 6 M urea. The H2A/H2B dimer and the H3/H4 tetramer were refolded by dialysis against buffer without urea, and the hexahistidine-tags of the histones in the H2A/H2B dimer and the H3/H4 tetramer were removed by thrombin protease digestion. The H2A/H2B dimer and the H3/H4 tetramer obtained by this method were confirmed to be proficient in nucleosome formation by the salt dialysis method. The human CENP-A gene, the centromere-specific histone H3 variant, contains 28 minor codons for E. coli. A new CENP-A gene optimized for the E. coli expression system was also constructed, and we found that the purified recombinant CENP-A protein formed a nucleosome-like structure with histones H2A, H2B, and H4.  相似文献   

15.
16.
Nucleosome cores mixed with the high mobility group proteins, HMG1 and HMG2, in 2 M NaCl, 5 M urea, 0.2 mM EDTA and 10 mM Tris pH 7.0, have been reconstituted by salt gradient dialysis. The reconstituted material, in 10 mM Tris pH 7.0, had a sedimentation peak at the same position as that of control nucleosome cores in sucrose density gradient ultracentrifugation. The SDS polyacrylamide gel electrophoresis of the reconstituted nucleosome cores demonstrated that they contain H2B, H3, H4 and HMG2 and are selectively deficient in H2A. The circular dichroism of DNA of the reconstituted cores was indistinguishable from that of control nucleosome cores. The results suggest that HMG2 replaces H2A as a component of the nucleosome histone core during reconstitution.  相似文献   

17.
A J Adler  E C Moran  G D Fasman 《Biochemistry》1975,14(19):4179-4185
Two histones from calf thymus, the slightly lysine-rich histone f2a2 and the arginine-rich f3, were combined separately, with homologous DNA. The complexes were reconstituted by means of guanidine hydrochloride gradient dialysis, and their circular dichroic (CD) spectra were examined in 0.14 M NaCl. The CD spectra of f2a2-DNA complexes are characterized by a positive band at 272 nm which is blue-shifted and greatly enhanced relative to the corresponding band for native DNA. This type of CD change was noted previously with f2a1-DNA and f2b-DNA complexes. In contrast, f3 histone causes only minor distortions in the DNA CD spectrum, and their character depends upon the state of the two sulfhydryl groups in f3. When the cysteines are reduced, f3-DNA complexes have a slightly increased positive band with a small blue shift; when oxidized disulfide is the predominant form, this CD band becomes slightly smaller than native DNA value. This laboratory has now examined complexes reconstituted from DNA and all five histones of calf thymus. The sum of the CD spectra of these complexes, although very similar to the CD curve for reconstituted complexes containing whole histone, does not approximate that of chromatin; the consequence of this observation is discussed.  相似文献   

18.
Histone octamers of purified monomer nucleosomes were labelled with [3H]dinitrofluorobenzene. Authentic 11 S nucleosomes were reconstituted in vitro from a mixture of [3H]dinitrophenylated histones and excess unlabelled monomer nucleosomes. The reconstituted nucleosomes were found to contain [3H]dinitrophenylated histones H2a and H2b but not [3H]dinitrophenylated histones H3 and H4. Approx. 83% of [3H]dinitrophenylated nucleosomes were immunoprecipitable with anti-dinitrophenyl immunoglobulin and Staphylococcus aureus. These results demonstrate that histones H2a and H2b contain dinitrofluorobenzene-reactive groups that can be modified without destroying their ability to participate in nucleosome formation in vitro.  相似文献   

19.
Nucleoplasmin is one of the most abundant proteins in Xenopus laevis oocytes, and it has been involved in the chromatin remodeling that takes place immediately after fertilization. This molecule has been shown to be responsible for the removal of the sperm-specific proteins and deposition of somatic histones onto the male pronuclear chromatin. To better understand the latter process, we have used sedimentation velocity, sedimentation equilibrium, and sucrose gradient fractionation analysis to show that the pentameric form of nucleoplasmin binds to a histone octamer equivalent consisting of equal amounts of the four core histones, H2A, H2B, H3, and H4, without any noticeable preference for any of these proteins. Removal of the histone N-terminal "tail" domains or the major C-terminal polyglutamic tracts of nucleoplasmin did not alter these binding properties. These results indicate that interactions other than those electrostatic in nature (likely hydrophobic) also play a critical role in the formation of the complex between the negatively charged nucleoplasmin and positively charged histones. Although the association of histones with nucleoplasmin may involve some ionic interactions, the interaction process is not electrostatically driven.  相似文献   

20.
A comparative study of the condensation of reconstituted complexes of circular SV40 DNA with core histones from calf thymus and sea urchin sperm was performed using sedimentation and electron microscopic techniques. It is shown that in low ionic strength solutions both types of complexes are similar to native minichromosomes. In the region from 0.08 to 0.16 M NaCl the complexes of SV40 DNA with thymus histones form small compact particles. By contrast, the compaction of the SV40 DNA complexes with sperm histones results in the formation of giant intermolecular associates. The results obtained may mean that histone H2B of sea urchin sperm participates in the formation of a higher order structure in sperm chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号