首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to improve the bread-making quality within hexaploid wheat by elaborating novel high-molecular weight glutenin subunits (HMW-GS) combinations useful in wheat-breeding programmes, a 1A chromosome fragment carrying the Glu-A1 locus encoding the subunit Ax2*, was translocated to the long arm of chromosome 1D. The partially isohomoeoallelic line, designated RR239, had a meiotic behaviour as regular as cv. Courtot. It was characterised using genomic in situ hybridization and microsatellite markers as well as biochemical and proteomic approaches. The translocated 1D chromosome had an interstitial 1AL segment representing in average 30% of the recombinant arm length that was confirmed by molecular analysis. The genetic length of the removed segment in chromosome 1DL was estimated to be at least 51 cM, and that of the interstitial 1AL translocation to be at least 33 cM. Proteome analysis performed on total endosperm proteins revealed variation in amounts, 8 spots and 1 spot being up- and downregulated, respectively. Quantitative variations in HMW-GS were observed for the Glu-A1 (Ax2*) and Glu-B1 (Bx7 + By8) loci in response to duplication of the Glu-A1 locus.  相似文献   

2.
Durum wheat (Triticum turgidum L. var. durum) is traditionally used for the production of numerous types of pasta, and significant amounts are also used for bread-making, particularly in southern Italy. The research reported here centres on the glutenin subunits 1Dx5 and 1Dy10 encoded by chromosome 1D, and whose presence in hexaploid wheats is positively correlated with higher dough strength. In order to study the effects of stable expression of the 1Dx5 and 1Dy10 glutenin subunits in different durum wheat genotypes, four cultivars commonly grown in the Mediterranean area (‘Svevo’, ‘Creso’, ‘Varano’ and ‘Latino’) were co-transformed, via particle bombardment of cultured immature embryos, with the two wheat genes Glu-D1-1d and Glu-D1-2b encoding the glutenin subunits, and a third plasmid containing the bar gene as a selectable marker. Protein gel analyses of T1 generation seed extracts showed expression of one or both glutenin genes in four different transformed durum wheat plants. One of these transgenic lines, DC2-65, showed co-suppression of all HMW-GS, including the endogenous ones. Transgene stability in the transgenic lines has been studied over four generations (T1–T4). Fluorescence in situ hybridization (FISH) analysis of metaphase chromosomes from T4 plants showed that the integration of transgenes occurred in both telomeric and centromeric regions. The three plasmids were found inserted at a single locus in two lines and in two loci on the same chromosome arm in one line. The fourth line had two transgenic loci on different chromosomes: one with both glutenin plasmids and a different one containing only the construct with the gene encoding the 1Dy10 glutenin subunit. Segregation of these two loci in subsequent generations allowed establishment of two sublines, one containing both 1Dx5 and 1Dy10 and the other containing only 1Dy10. Small-scale quality tests showed that accumulation of Dx5, Dy10 or both in transgenic durum wheat seeds resulted in doughs with stronger mixing characteristics. A. Gadaleta and A. E. Blechl have contributed equally to this work.  相似文献   

3.
A wheat cultivar “Chinese Spring” chromosome substitution line CS-1Sl(1B), in which the 1B chromosome was substituted by 1Sl from Aegilops longissima, was developed and found to possess superior dough and breadmaking quality. The molecular mechanism of its super quality conformation is studied in the aspects of high molecular glutenin genes, protein accumulation patterns, glutenin polymeric proteins, protein bodies, starch granules, and protein disulfide isomerase (PDI) and PDI-like protein expressions. Results showed that the introduced HMW-GS 1Sl×2.3* and 1Sly16* in the substitution line possesses long repetitive domain, making both be larger than any known x- and y-type subunits from B genome. The introduced subunit genes were also found to have a higher level of mRNA expressions during grain development, resulting in more HMW-GS accumulation in the mature grains. A higher abundance of PDI and PDI-like proteins was observed which possess a known function of assisting disulfide bond formation. Larger HMW-GS deposited in protein bodies were also found in the substitution line. The CS substitution line is expected to be highly valuable in wheat quality improvement since the novel HMW-GS are located on chromosome 1Sl, making it possible to combine with the known superior D×5+Dy10 subunits encoded by Glu-D1 for developing high quality bread wheat.  相似文献   

4.
A monosomic addition line of Aegilops tauschii chromosome 1D in Triticum durum cv. PBW114 was produced in 1990. This line was self-pollinated and maintained for several generations while following the presence of chromosome 1D carrying the gene for red glume color. Cytological analysis indicated that two of the three derivative lines had substitution of chromosome 1D for 1A and another had substitution of chromosome 1D for 1B. One of these lines carried a pair of small chromosomes in addition to the 1D chromosome. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the derived lines showed the presence of high-molecular-weight (HMW) glutenin encoded by the Glu-D1 locus. The small chromosome found in one of the lines had nearly regular pairing and transmission to daughter nuclei. Fluorescent in situ hybridization (FISH) and analysis of molecular markers indicated that the small chromosome was derived from the short arm of chromosome 1A and carried the Glu-A3 locus. Microsatellite mapping based on the deletion bin map revealed that the small chromosome had terminal deletions on both the terminal and centromeric sides. The line with the small chromosome showed improvement of the sodium dodecyl sulfate (SDS)-sedimentation value as compared to parent durum. However, the increase in SDS-sedimentation value was more significant in the substitution line of chromosome 1D for 1A without the small chromosome. These facts suggest a negative effect of the Glu-A3 locus on dough strength. The sequence of the Glu-D1 locus from these lines showed that the HMW glutenin subunits were Ae. tauschii specific 2t + T2, which were previously found to be associated with poor rheological properties and bread loaf volume in synthetic hexaploid wheat by other workers. Thus, the significant improvement in the SDS-sedimentation value of the substitution line of 1D for 1A suggests that the absence of the negative effect of chromosome 1A on quality is more important than the presence of Glu-D1 of Ae. tauschii.  相似文献   

5.
The visco-elastic properties of bread flour are firmly associated with the presence or absence of certain HMW subunits coded by the Glu-1 genes. Identifying allelic specific molecular markers (AS-PCR) associated with the presence of Glu-1 genes can serve as a valuable tool for the selection of useful genotypes. This paper reports the use of primers designed from nucleotide sequences of the Glu-D1 gene of wheat (AS-PCR for Glu-D1y10) that recognise and amplify homologous sequences of the Glu-R1 gene subunits of rye. The primers amplify the complete coding regions and provided two products of different size in rye, in wheats carrying the substitution 1R(1D) and in rye-wheat aneuploid lines carrying the long arm of chromosome 1R. The location, the molecular characterisation of these sequences and their expression during grain ripening seem to demonstrate that the amplification products correspond to structural genes encoding the high-molecular-weight (HMW) glutenins of rye. The homology of the rye gene to subunits encoding HMW glutenins in wheat was confirmed by Southern blots and sequencing. The amplification-products were cloned, sequenced and characterised, and the sequences compared with the main glutenin subunits of wheat and related species. Further, an RT-PCR experiment was performed using primers designed from the sequence of both amplified products. This assay demonstrated that both sequences are expressed in endosperm during grain ripening. The results of these analyses suggest that both gene subunits correspond to x- and y-type genes of the Glu-R1 locus of rye. Received: 11 December 2000 / Accepted: 17 April 2001  相似文献   

6.
The objective of this study is to demonstrate characteristics of a y-type high molecular weight glutenin subunit (D1y HMW-GS) at Glu-D1 found in IT212991, a North Korean landrace wheat compared to Dy12 and Dy12.K as a novel HMW-GS in JB20, a Korean wheat line onto molecular analyses as PCR, cloning, DNA sequencing, and RP-HPLC and proteomic analyses as sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE), two-dimensional electrophoresis (2-DE), Fourier-transform mass spectrometry (LTQ-FT-MS). The D1y of IT212991 was identified to have faster electrophoretic mobility than that of Dy12 by SDS–PAGE. HMW-GS components of IT212991 were identified to be different from Chinese Spring (CS) and JB20, a Korean wheat line by RP-HPLC. The result of mass spectrometric analysis, the D1y of IT212991 (68510.8 Da) was similar to that of Dy12.K of JB20 (68514.4 Da), and lower than Dy12 of CS (69151.2 Da). The result of LTQ-FT-MS based on 2-DE, the D1y of IT212991 was identified to be similar with Dy12 corresponding to the protein function as ‘Glutenin, high molecular weight subunit 12’. The D1y encoding the D1y of IT212991 was identified to consist of 652 amino acid sequences corresponding to 1962 bp according to DNA sequencing. The gene was identified to have a insertion and deletion (InDel) corresponding to 18 bp sequences ‘AACAGGACAAGGGCAACA’ compared to ordinary Dy12 gene. It was demonstrated that the D1y of IT212991 is the same as Dy12.K.  相似文献   

7.
The protein named T1, present in Triticum tauschii, was previously characterized as a high-molecular-weight (HMW) glutenin subunit with a molecular size similar to that of the y-type glutenin subunit-10 of Triticum aestivum. This protein was present along with other HMW glutenin subunits named 2t and T2, and was considered as part of the same allele at the Glu-D t 1 locus of T. tauschii. This paper describes a re-evaluation of this protein, involving analyses of a collection of 173 accessions of T. tauschii, by SDS-PAGE of glutenin subunits after the extraction of monomeric protein. No accessions were found containing the three HMW glutenin subunits. On the other hand, 17 lines with HMW glutenin subunits having electrophoretic mobilities similar to subunits 2t and T2 were identified. The absence of T1 protein in these gel patterns has shown that protein T1 is not a component of the polymeric protein. Rather, the T1 protein is an ω-gliadin with an unusually high-molecular-weight. This conclusion is based on acidic polyacrylamide gel electrophoresis (A-PAGE), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and two-dimensional gel electrophoresis (A-PAGE+ SDS-PAGE), together with analysis of its N-terminal amino-acids sequence. The inheritance of ω-gliadin T1 was studied through analyses of gliadins and HMW glutenins in 106 F2 grains of a cross between synthetic wheat, L/18913, and the wheat cv Egret. HMW glutenin subunits and gliadins derived from T. tauschii (Glu-D t 1 and Gli-D t 1) segregated as alleles of the Glu-D1 and Gli-D1 loci of bread wheat. A new locus encoding the ω-gliadin T1 was identified and named Gli-DT1. The genetic distance between this new locus and those of endosperm proteins encoded at the 1D chromosome were calculated. The Gli-DT1 locus is located on the short arm of chromosome 1D and the map distance between this locus and the Gli-D1 and Glu-D1 loci was calculated as 13.18 cM and 40.20 cM, respectively. Received: 13 October 2000 / Accepted: 18 April 2001  相似文献   

8.
While quality in hexaploid wheat (Triticum aestivum L. em Thell.) is a very complex trait, it is known that the water-insoluble gluten proteins are responsible for the elasticity and chohesiveness (strength) of dough and are therefore important determinants of breadmaking quality. High-molecular-weight (HMW) glutenin subunits encoded by genes on the long arm of group 1 chromosomes have been associated with gluten strength, and a portion of the variability between cultivars can be attributed to glutenin subunit composition. Good or poor wheat breadmaking quality is associated with two allelic pairs at the Glu-D1 complex locus, designated 1Dx5–1Dy10 and 1Dx2–1Dy12, respectively. Among the HMW glutenin subunits encoded at Glu-B1, Bx7 is quite common, being associated with either of two subunits, By8 or By9. Both allelic pairs contribute moderately well to good breadmaking quality by increasing dough elasticity. Glutenin subunit screening is accomplished using electrophoresis (SDS-PAGE). In this paper, I report the development of an alternative screening method based on glutenin genes themselves using the polymerase chain reaction (PCR). This easy, quick and non-destructive PCR-based approach is an efficient alternative to standard procedures for selecting bread-wheat genotypes with good breadmaking characteristics. Received: 14 August 1999 / Accepted: 21 March 2000  相似文献   

9.
We generated and characterized transgenic rye synthesizing substantial amounts of high-molecular-weight glutenin subunits (HMW-GS) from wheat. The unique bread-making characteristic of wheat flour is closely related to the elasticity and extensibility of the gluten proteins stored in the starchy endosperm, particularly the HMW-GS. Rye flour has poor bread-making quality, despite the extensive sequence and structure similarities of wheat and rye HMW-GS. The HMW-GS 1Dx5 and 1Dy10 genes from wheat, known to be associated with good bread-making quality were introduced into a homozygous rye inbred line by the biolistic gene transfer. The transgenic plants, regenerated from immature embryo derived callus cultures were normal, fertile, and transmitted the transgenes stably to the sexual progeny, as shown by Southern blot and SDS-PAGE analysis. Flour proteins were extracted by means of a modified Osborne fractionation from wildtype (L22) as well as transgenic rye expressing 1Dy10 (L26) or 1Dx5 and 1Dy10 (L8) and were quantified by RP-HPLC and GP-HPLC. The amount of transgenic HMW-GS in homozygous rye seeds represented 5.1% (L26) or 16.3% (L8) of the total extracted protein and 17% (L26) or 29% (L8) of the extracted glutelin fraction. The amount of polymerized glutelins was significantly increased in transgenic rye (L26) and more than tripled in transgenic rye (L8) compared to wildtype (L22). Gel permeation HPLC of the un-polymerized fractions revealed that the transgenic rye flours contained a significantly lower proportion of alcohol-soluble oligomeric proteins compared with the non-transgenic flour. The quantitative data indicate that the expression of wheat HMW-GS in rye leads to a high degree of polymerization of transgenic and native storage proteins, probably by formation of intermolecular disulfide bonds. Even -40k secalins, which occur in non-transgenic rye as monomers, are incorporated into these polymeric structures. The combination 1Dx5 + 1Dy10 showed stronger effects than 1Dy10 alone. Our results are the first example of genetic engineering to significantly alter the polymerization and composition of storage proteins in rye. This may be an important step towards improving bread-making properties of rye whilst conserving its superior stress resistance.  相似文献   

10.
Introgression of 1Dx5+1Dy10 into Tritordeum   总被引:2,自引:0,他引:2  
The uses of hexaploid tritordeum as a crop for human consumption require improvement of its bread-making quality. For this purpose chromosome 1D of bread wheat with the Glu-D1 allele encoding for high-molecular-weight glutenin subunits Dx5+Dy10 was introgressed into tritordeum. Different primary tritordeums were crossed with wheats carrying subunits Dx5+Dy10. The hybrids were backcrossed to tritordeum and seeds for the next backcross (or selfing) were selected for the presence of chromosome 1D using SDS-PAGE. Forty two chromosome plants carrying subunits Dx5+Dy10 were obtained after two backcrosses and selfing. Chromosome characterization of these plants using fluorescence in situ hybridisation (FISH) proved that either chromosome substitution 1H(ch)/1D or 1A/1D had been obtained. A homozygous plant with a translocation of the entire 1DL arm to 1H(ch)S was also obtained. The complete chromosome substitution lines have better agronomic characteristics than the lines with translocations.  相似文献   

11.
Genes encoding high-molecular-weight (HMW) glutenin subunits, present in bread-wheat lines and cultivars, were studied by RFLP (restriction fragment length polymorphism) and PCR (polymerase chain reaction) analyses. In particular, allelic subunits of the x-or y-type, encoded at the Glu-D1 locus present on the long arm of chromosome 1D, were investigated. The variation in size, observed in different allelic subunits, is mainly due to variation in the length of the central repetitive domain, typical of these proteins. Deletions or duplications, probably caused by unequal crossingover, have given rise to the size heterogeneity currently observed. The possibility of using the PCR technique for a detailed analysis of HMW glutenin genes in order to obtain a more accurate estimation of the molecular weight of their encoded subunits, and the detection of unexpressed genes, is also described.  相似文献   

12.
Three monosomic lines (MSLs) and three nullisomic lines (NSLs) of the homeologous group 1 and one euploid line of the bread wheat Triticum aestivum cultivar Courtot were used in a proteomic approach to investigate the effects of zero, one or two doses of chromosomes 1A, 1B and 1D on the amount of endosperm proteins. Polypeptides whose amounts changed significantly between each aneuploid line and the euploid line were identified using image analyses of two-dimensional gel electrophoresis patterns resulting from specific endosperm protein extractions. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry and electrospray ionization tandem mass spectrometry were also used for protein identification. Removing one chromosome or a chromosome pair allowed varying responses to be observed for the remaining endosperm protein genes. Compensation phenomena for the high molecular weight glutenin subunits (HMW-GS) were detected only in the MSLs. Subunits Bx7, By8 and Dy12 were the only HMW-GS overexpressed (from 152-737%) when chromosomes 1A or 1B or 1D were at hemizygous state. Thirteen new protein spots were detected only in the NSL1D, and seven were identified as HMW-GS analogs. These seven new spots may result from the expression of inactive genes. The HMW-GS were of significantly higher volume in MSLs, whereas the low molecular weight glutenin subunits and the gamma-gliadins were of lower volume in aneuploid lines. Most of the down-regulated proteins in the MSLs were storage proteins encoded at loci located on another chromosome pair. Complex regulations between chromosomes and loci of the homeologous groups 1 and 6 in bread wheat are discussed.  相似文献   

13.
Bread-making quality in hexaploid wheats is a complex trait. It has been shown that the amount and composition of protein can influence dough rheological properties. The high-molecular-weight (HMW) glutenins are encoded by a complex locus, Glu-1, on the long arm of group-1 homoeologus chromosome of the A, B and D genomes. In this work we used PCR-based DNA markers as a substitution tool to distinguish wheat bread-making quality. We detected PCR-based DNA markers for coding sequence of Glu-A1x, Glu-B1x and Glu-D1x to be 2300 bp, 2400 bp and 2500 bp respectively. DNA markers related to coding sequence of Glu-A1y, Glu-B1y and Glu-D1y were; 1800 bp, 2100 bp and 1950 bp, however, the repetitive region of their coding sequence were shown to be about 1300 bp, 1500 bp and 1600 bp. The results demonstrate that the size variation was due to different lengths of the central repetitive domain. Good or poor bread-making quality in wheat is associated with two allelic pairs of Glu-D1, designated 1Dx5-1Dy10 and 1Dx2-1Dy12. The 1Bx7 allele has moderate-to-good quality score. The specific DNA markers, of 450 bp, 576 bp, 612 bp and 2400 bp respectively were characterized for 1Dx5, 1Dy10, 1Dy12 and 1Bx7 alleles. These markers are very important in screening of wheat for bread-making quality.  相似文献   

14.
15.
Breeders can force sexual hybridisation between wheat and related grass species to produce interspecific hybrids containing a dihaploid set of wheat and related chromosomes. This facilitates the introgression of desirable genes into wheat from the secondary gene pool. However, most elite European wheat varieties carry genes that suppress crossability, making the transfer of novel traits from exotic germplasm into elite wheat varieties difficult or impossible. Previous studies have identified at least five crossability loci in wheat. Here, the crossability locus with the largest effect, Kr1 on chromosome arm 5BL, was fine-mapped by developing a series of recombinant substitution lines in which the genome of the normally non-crossable wheat variety ‘Hobbit sib’ carries a recombinant 5BL chromosome arm containing segments from the crossable variety ‘Chinese Spring’. These recombinant lines were scored for their ability to cross with rye over four seasons. Analysis revealed at least two regions on 5BL affecting crossability, including the Kr1 locus. However, the ability to set seed is highly dependent on prevailing environmental conditions. Typically, even crossable wheat lines exhibit little or no seed set when crossed with rye in winter, but show up to 90% seed set from similar crosses made in summer. By recombining different combinations of the two regions affecting crossability, wheat lines that consistently exhibit up to 50% seed set, whether crossed in the UK winter or summer conditions, were generated, thus creating a very important tool for increasing the efficiency of alien wheat transfer programmes.  相似文献   

16.
Glu-D1y12.K as a novel y-type subunit was found in HMW-GSs encoded at the Glu-D1 locus in the JB20, which a Korean wheat line from F9 lines crossed by Keumkang with Glu-D1d and Chinese Spring (CS) with Glu-D1a alleles. This novel subunit shows faster electrophoretic mobility and lower molecular weight than Dy12 subunit on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The result of linear ion-trap and Fourier-transform mass spectrometry (LTQ-FT-MS) based on two-dimensional electrophoresis (2-DE) showed that the Dy12.K subunit has high similarity against protein ID: P08488 (GLT3_WHEAT) as ‘Glutenin, high molecular weight subunit 12’ form UniProtKB. The gene of the Glu-1Dy12.K subunit is composed of 1962 nucleotide base pairs containing open reading frame (ORF) as 652 amino acids corresponding to about 70.1 kDa. It has four indels (36 bp insertions: two repeated 18 and 24 bp deletion: two deletions with 6?+?18 bp) and 21 SNPs compared to Glu-1Dy10 (GI: 164457872 in NCBI), and one deletion (18 bp) and three SNPs compared to Glu-1Dy12 (GI: 1036031968) by DNA markers. Consequentially, in comparison with Dy10, 13 SNPs were non-synonymous SNPs and eight SNPs were synonymous SNPs of 21 SNPs. In comparison with Dy12, only one SNP was non-synonymous SNP of three SNPs. Furthermore, the deduced peptide sequences as ‘TGQGQQ’ corresponding to ‘AACAGGACAAGGGCAACA’ are deleted only in the Dy12.K subunit.  相似文献   

17.

Background  

High molecular weight glutenin subunits (HMW-GS) have been proved to be mostly correlated with the processing quality of common wheat (Triticum aestivum). But wheat cultivars have limited number of high quality HMW-GS. However, novel HMW-GS were found to be present in many wheat asymmetric somatic hybrid introgression lines of common wheat/Agropyron elongatum.  相似文献   

18.
Proline and glutamine-rich wheat seed endosperm proteins are collectively referred to as prolamins. They are comprised of HMW-GSs, LMW-GSs and gliadins. HMW-GSs are major determinants of gluten elasticity and LMW-GSs considerably affect dough extensibility and maximum dough resistance. The inheritance of glutenin subunits follows Mendelian genetics with multiple alleles in each locus. Identification of the banding patterns of glutenin subunits could be used as an estimate for screening high quality wheat germplasm. Here, by means of a two-step 1D-SDS-PAGE procedure, we identified the allelic variations in high and low-molecular-weight glutenin subunits in 65 hexaploid wheat (Triticum aestivum L.) cultivars representing a historical trend in the cultivars introduced or released in Iran from the years 1940 to 1990. Distinct alleles 17 and 19 were detected for Glu-1 and Glu-3 loci, respectively. The allelic frequencies at the Glu-1 loci demonstrated unimodal distributions. At Glu-A1, Glu-B1 and Glu-D1, we found that the most frequent alleles were the null, 7 + 8, 2 + 12 alleles, respectively, in Iranian wheat cultivars. In contrast, Glu-3 loci showed bimodal or trimodal distributions. At Glu-A3, themost frequent alleles were c and e. At Glu-B3 the most frequent alleles were a, b and c. At Glu-D3 locus, the alleles b and a, were the most and the second most frequent alleles in Iranian wheat cultivars. This led to a significantly higher Nei coefficient of genetic variations in Glu-3 loci (0.756) as compared to Glu-1 loci (0.547). At Glu-3 loci, we observed relatively high quality alleles in Glu-A3 and Glu-D3 loci and low quality alleles at Glu-B3 locus.  相似文献   

19.
New DNA markers for high molecular weight glutenin subunits in wheat   总被引:2,自引:0,他引:2  
End-use quality is one of the priorities of modern wheat (Triticum aestivum L.) breeding. Even though quality is a complex trait, high molecular weight (HMW) glutenins play a major role in determining the bread making quality of wheat. DNA markers developed from the sequences of HMW glutenin genes were reported in several previous studies to facilitate marker-assisted selection (MAS). However, most of the previously available markers are dominant and amplify large DNA fragments, and thus are not ideal for high throughput genotyping using modern equipment. The objective of this study was to develop and validate co-dominant markers suitable for high throughput MAS for HMW glutenin subunits encoded at the Glu-A1 and Glu-D1 loci. Indels were identified by sequence alignment of allelic HMW glutenin genes, and were targeted to develop locus-specific co-dominant markers. Marker UMN19 was developed by targeting an 18-bp deletion in the coding sequence of subunit Ax2* of Glu-A1. A single DNA fragment was amplified by marker UMN19, and was placed onto chromosome 1AL. Sixteen wheat cultivars with known HMW glutenin subunits were used to validate marker UMN19. The cultivars with subunit Ax2* amplified the 362-bp fragment as expected, and a 344-bp fragment was observed for cultivars with subunit Ax1 or the Ax-null allele. Two co-dominant markers, UMN25 and UMN26, were developed for Glu-D1 by targeting the fragment size polymorphic sites between subunits Dx2 and Dx5, and between Dy10 and Dy12, respectively. The 16 wheat cultivars with known HMW glutenin subunit composition were genotyped with markers UMN25 and UMN26, and the genotypes perfectly matched their subunit types. Using an Applied Biosystems 3130xl Genetic Analyzer, four F2 populations segregating for the Glu-A1 or Glu-D1 locus were successfully genotyped with primers UMN19, UMN25 and UMN26 labeled with fluorescent dyes.  相似文献   

20.
Higher polyphenol oxidase (PPO) activity in wheat kernels and flour has been implicated in the time dependent darkening of various end-products. Previous study conducted on a bread wheat (Triticum aestivum L.) doubled haploid (DH) mapping population derived from Chara (medium-high PPO) and WW2449 (low PPO) identified a major QTL for PPO activity located on the long arm of chromosome 2A. Physical mapping of SSR markers accounting for up to 84% of phenotypic variation for PPO activities suggests that the candidate PPO locus is localised in the deletion bin delimited by 2AL 0.77–0.85. In order to develop functional gene markers, nine wheat ESTs mapped to this deletion bin and partial PPO reference genes were explored for their sequence identities and linkage with PPO locus in a mapping population. In the present study, two markers: one SNP and one CAPS based upon BQ161439 sequence variation between the parents were identified which exhibited a tight linkage (0–0.6 cM) with the PPO loci designated as XTc1 and XPPO- LDOPA. We also mapped the reference PPO gene (GenBank AY526268) characterised from developing kernels of wheat, on the long arm of chromosome 2A which exhibited a complete linkage with XPPO- L DOPA locus. Results suggest that PPO variation displayed in the DH population from Chara/WW2449 is due to the same reference PPO gene. Allelic homoplasy of tightly linked markers, indicated that these markers are ‘diagnostic’ for the selection of low PPO gene in a range of germplasm being used in different Australian breeding programs. Identification and validation of ‘functional gene markers’ would facilitate in enhancing the selection efficiency for low PPO activity in wheat breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号