首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
放射性药物指供临床诊断或治疗用的放射性核素制剂或其标记化合物。放射性核素靶向治疗是利用对肿瘤细胞具有特异高亲和力的分子载体将核素定向导入特定的肿瘤组织,对肿瘤进行治疗。与传统的放疗和化疗相比,其具有选择性杀伤肿瘤细胞的特点。随着核医学的发展,SPECT/CT、PET/CT的普及,新靶点的发现和新型放射性药物的研发,利用放射性药物进行靶向治疗在肿瘤临床治疗中占据的地位越来越重要。本文简述了放射性药物的分类、组成及特点;综述了针对肿瘤相关抗原的放射免疫药物在非霍奇金淋巴瘤、结直肠癌和前列腺癌中的应用;受体介导的放射性核素药物在治疗神经内分泌肿瘤、前列腺癌和乳腺癌中的临床应用以及基于基因修饰的放射性药物在肿瘤靶向治疗中的实验研究进展。最后总结了放射性药物在肿瘤靶向治疗中的应用前景与面临的挑战,以期为靶向治疗肿瘤的放射性药物的开发和临床应用提供一些参考。  相似文献   

2.
The use of radionuclides in therapy, both as sealed sources and in the radiopharmaceutical form, is discussed from receipt of radiopharmaceuticals through their use, to their disposal. The licensing requirements for use of therapeutic radionuclides is presented. Discussions dealing with receipt, storage and administration of radiopharmaceuticals are treated in detail, as well as suggestions for personnel monitoring. Procedures involved in the event of emergency surgery and/or death are discussed. The misadministration rules of the Nuclear Regulatory Commission regarding therapies were presented.  相似文献   

3.
《Endocrine practice》2021,27(5):494-502
ObjectivesWe initiate this comprehensive review to update the advances in this field by objectively elucidating the efficacies of promising radiopharmaceuticals.MethodsWe performed a comprehensive PUBMED search using the combined terms of “thyroid cancer” and “radiopharmaceuticals” or “nuclear medicine”, yielding 3273 and 11026 articles prior to December 31, 2020, respectively.ResultsBased on the mechanism of molecular metabolism, the evaluation of differentiated thyroid cancer and dedifferentiated thyroid cancer is largely centered around radioiodine and fluorine 18 (18F)-fludeoxyglucose, respectively. Further, 18F-L-dihydroxyphenylalanine and gallium 68 DOTATATE are the preferred tracers for medullary thyroid cancer. In dedifferentiated medullary thyroid cancer and anaplastic thyroid cancer, 18F-fludeoxyglucose is superior.ConclusionsThe future lies in advances in molecular biology, novel radiopharmaceuticals and imaging devices, paving ways to the development of personalized medication for thyroid cancer patients.  相似文献   

4.
PurposeTo provide a guideline curriculum covering theoretical and practical aspects of education and training for Medical Physicists in Nuclear Medicine within Europe.Material and methodsNational training programmes of Medical Physics, Radiation Physics and Nuclear Medicine physics from a range of European countries and from North America were reviewed and elements of best practice identified. An independent panel of experts was used to achieve consensus regarding the content of the curriculum.ResultsGuidelines have been developed for the specialist theoretical knowledge and practical experience required to practice as a Medical Physicist in Nuclear Medicine in Europe. It is assumed that the precondition for the beginning of the training is a good initial degree in Medical Physics at master level (or equivalent). The Learning Outcomes are categorised using the Knowledge, Skill and Competence approach along the lines recommended by the European Qualifications Framework. The minimum level expected in each topic in the theoretical knowledge and practical experience sections is intended to bring trainees up to the requirements expected of a Medical Physicist entering the field of Nuclear Medicine.ConclusionsThis new joint EANM/EFOMP European guideline curriculum is a further step to harmonise specialist training of Medical Physicists in Nuclear Medicine within Europe. It provides a common framework for national Medical Physics societies to develop or benchmark their own curricula. The responsibility for the implementation and accreditation of these standards and guidelines resides within national training and regulatory bodies.  相似文献   

5.
癌症是威胁人类健康和生命的严重疾病之一,早期诊断与及时治疗是提高癌症患者生存率的最有效途径。激光拉曼光谱技术作为一种非侵入性的检测技术,可以无损伤地提供丰富的分子结构特征和物质成分信息,从分子水平上反映癌变组织与正常组织之间的结构差异,从而可用于癌症的早期诊断。综述了激光拉曼光谱技术在皮肤癌、鼻咽癌、肺癌、胃癌、结肠癌、乳腺癌及前列腺癌诊断中的研究进展,并对拉曼光谱技术在癌症诊断中的发展方向和应用前景作了进一步的展望,为癌症的早期检测和诊断技术的应用研究提供参考依据。  相似文献   

6.
Mitochondrial dysfunction contributes to a large variety of human disorders, ranging from neurodegenerative and neuromuscular diseases, obesity, and diabetes to ischemia-reperfusion injury and cancer. Increasing pharmacological efforts toward therapeutic interventions have been made leading to the emergence of “Mitochondrial Medicine” as a new field of biomedical research. The identification of molecular mitochondrial drug targets in combination with the development of methods for selectively delivering biologically active molecules to the site of mitochondria will eventually launch a multitude of new therapies for the treatment of mitochondria-related diseases, which are based either on the selective protection, repair, or eradication of cells. Yet, while tremendous efforts are being undertaken to identify new mitochondrial drugs and drug targets, the development of mitochondria-specific drug carrier systems is lagging behind. To ensure a high efficiency of current and future mitochondrial therapeutics, delivery systems need to be developed, which are able to selectively transport biologically active molecules to and into mitochondria within living human cells. In this study we present the first data demonstrating that conventional liposomes can be rendered mitochondria-specific via the attachment of known mitochondriotropic residues to the liposomal surface.  相似文献   

7.
Mitochondrial dysfunction contributes to a large variety of human disorders, ranging from neurodegenerative and neuromuscular diseases, obesity, and diabetes to ischemia-reperfusion injury and cancer. Increasing pharmacological efforts toward therapeutic interventions have been made leading to the emergence of "Mitochondrial Medicine" as a new field of biomedical research. The identification of molecular mitochondrial drug targets in combination with the development of methods for selectively delivering biologically active molecules to the site of mitochondria will eventually launch a multitude of new therapies for the treatment of mitochondria-related diseases, which are based either on the selective protection, repair, or eradication of cells. Yet, while tremendous efforts are being undertaken to identify new mitochondrial drugs and drug targets, the development of mitochondria-specific drug carrier systems is lagging behind. To ensure a high efficiency of current and future mitochondrial therapeutics, delivery systems need to be developed, which are able to selectively transport biologically active molecules to and into mitochondria within living human cells. In this study we present the first data demonstrating that conventional liposomes can be rendered mitochondria-specific via the attachment of known mitochondriotropic residues to the liposomal surface.  相似文献   

8.
Nanotechnology is the development of engineered devices at the atomic, molecular and macromolecular level in nanometer range. Nanoparticles have potential application in medical field including diagnostics and therapeutics. Nanotechnology devices are being developed for diagnosis of cancer and infectious diseases which can help in early detection of the disease. Advances in nanotechnology also proved beneficial in therapeutic field such as drug discovery, drug delivery and gene/protein delivery. Nanoparticles can be constructed by various methodology so that effect can be targeted at desired site. In this review, some of the applications of nanoparticles in medicine as diagnostics and therapeutics which can be employed safely at the clinical level have been described. On other hand, as the particles become generally smaller their likehood of causing harm to the lung increases. Therefore, there is a need to study safety of nanoparticles.  相似文献   

9.
L-asparaginase is a vital enzyme of medical importance, and renowned as a chemotherapeutic agent. The relevance of this enzyme is not only limited as an anti-cancer agent, it also possesses a wide range of medical application. The application includes the antimicrobial property, treatment of infectious diseases, autoimmune diseases, canine and feline cancer. Apart from the health care industry, its significance is also established in the food sector as a food processing agent to reduce the acrylamide concentration. L-asparaginase is known to be produced from various bacterial, fungal and plant sources. However, there is a huge market demand due to its wide range of application. Therefore, the industry is still in the search of better-producing source in terms of high yield and low immunogenicity. It can be produced by both submerged and solid state fermentation, and each fermentation process has its own merits and demerits. This review paper focuses on its improved production strategy by adopting statistical experimental optimization techniques, development of recombinant strains, through mutagenesis and nanoparticle immobilization, adopting advanced and cost-effective purification techniques. Available research literature proves the competence and therapeutic potential of this enzyme. Therefore, research orientation toward the exploration of this clinical significant enzyme has to be accelerated. The objectives of this review are to discuss the high yielding sources, current production strategies, improvement of production, effective downstream processing and therapeutic application of L-asparaginase.  相似文献   

10.
An unknown primary tumor (UPT) is defined by the presence of a metastatic cancer without a known primary site of origin despite a standardized diagnostic workup. Clinically, UPTs show rapid progression and early dissemination, with signs and symptoms related to the metastatic site. The molecular bases of their biology remain largely unknown, with no evidence as to whether they represent a distinct biological entity. Immunohistochemistry remain the best diagnostic tool in term of cost-effectiveness, but the time-consuming "algorithmic process" it relies on has led to the application of new molecular techniques for the identification of the primary site of UPTs. For example, several microarray or miRNA classifications of UPTs have been used, with an accuracy in the prediction of the primary site as high as 90%. It should be noted that validating a prediction of tissue origin is challenging in these patients, since most of them will never have a primary site identified. Moreover, prospective studies to determine whether selection of treatment options based on such profiling methods actually improves patient outcome are still missing. In the last few years functional imaging (i.e. FDG-PET/CT) has gained a main role in the detection of the site of origin of UPTs and is currently recommended by the European Association of Nuclear Medicine. However, despite recent refinements in the diagnostic workup, the site of origin of UPT often remains elusive. As a consequence, treatment of patients with UPT is still empirical and inadequate.  相似文献   

11.
Since previous ACOMEN's conference in 2005 on radiopharmaceuticals, many improvements have been encountered: active research has allowed the development of numerous new tracers of interest, with a large part dedicated for PET; clinical applications of radiopharmaceuticals have resulted in patients care improvement, both for management and survival; therapeutic applications are now fully recognized, as internal targeted radiotherapy could be considered as efficient in several cancer diseases; and regulation, despite remaining difficulties, will certainly become more favourable for radiopharmaceuticals. Thus we could make sure that radiopharmaceuticals use will be even more established in the next years.  相似文献   

12.
The construction of the 68Ge/68Ga generator has increased application of radiopharmaceuticals labeled with this isotope in medicine. 68Ga-PET is widely employed in the management of neuroendocrine tumors but favorable chemistry with tri- and tetraaza-ring molecules has opened wide range of 68Ga application in other fields of PET imaging. This review covers the radiopharmaceuticals labeled with gallium in molecular imaging and shows perspectives on the use of gallium-68 as a substitute for technetium-99, fluorine-18 and carbon-11 in some applications.  相似文献   

13.
This issue of Molecular Medicine contains 14 original research reports and state-of-the-art reviews on histone deacetylase inhibitors (HDACi's), which are being studied in models of a broad range of diseases not related to the proapoptotic properties used to treat cancer. The spectrum of these diseases responsive to HDACi's is for the most part due to several antiinflammatory properties, often observed in vitro but importantly also in animal models. One unifying property is a reduction in cytokine production as well as inhibition of cytokine postreceptor signaling. Distinct from their use in cancer, the reduction in inflammation by HDACi's is consistently observed at low concentrations compared with the higher concentrations required for killing tumor cells. This characteristic makes HDACi's attractive candidates for treating chronic diseases, since low doses are well tolerated. For example, low oral doses of the HDACi givinostat have been used in children to reduce arthritis and are well tolerated. In addition to the antiinflammatory properties, HDACi's have shown promise in models of neurodegenerative disorders, and HDACi's also hold promise to drive HIV-1 out of latently infected cells. No one molecular mechanism accounts for the non-cancer-related properties of HDACi's, since there are 18 genes coding for histone deacetylases. Rather, there are mechanisms unique for the pathological process of specific cell types. In this overview, we summarize the preclinical data on HDACi's for therapy in a wide spectrum of diseases unrelated to the treatment of cancer. The data suggest the use of HDACi's in treating autoimmune as well as chronic inflammatory diseases.  相似文献   

14.
15.
The medicinal chemistry and pharmacology of the four subtypes of adenosine receptors (ARs) and the eight subtypes of P2Y receptors (P2YRs, activated by a range of purine and pyrimidine mono- and dinucleotides) has recently advanced significantly leading to selective ligands. X-ray crystallographic structures of both agonist- and antagonist-bound forms of the A(2A)AR have provided unprecedented three-dimensional detail concerning molecular recognition in the binding site and the conformational changes in receptor activation. It is apparent that this ubiquitous cell signaling system has implications for understanding and treating many diseases. ATP and other nucleotides are readily released from intracellular sources under conditions of injury and organ stress, such as hypoxia, ischemia, or mechanical stress, and through channels and vesicular release. Adenosine may be generated extracellularly or by cellular release. Therefore, depending on pathophysiological factors, in a given tissue, there is often a tonic activation of one or more of the ARs or P2YRs that can be modulated by exogenous agents for a beneficial effect. Thus, this field has provided fertile ground for pharmaceutical development, leading to clinical trials of selective receptor ligands as imaging agents or for conditions including cardiac arrhythmias, ischemia/reperfusion injury, diabetes, pain, thrombosis, Parkinson's disease, rheumatoid arthritis, psoriasis, dry eye disease, pulmonary diseases such as cystic fibrosis, glaucoma, cancer, chronic hepatitis C, and other diseases.  相似文献   

16.
基因治疗是一种新的治疗手段,可用于癌症、遗传性疾病、感染性疾病、心血管疾病和自身免疫性疾病等的治疗。癌症基因治疗是基因治疗的主要应用领域。过去几年里,全球基因治疗临床试验取得了很大的进步,也遇到了很多困难。未来基因治疗的主要目标是发展安全和高效的基因导入系统,它们能将外源遗传物质靶向性地导入特异的细胞。简要综述了基因治疗研究和应用的进展、困难及其发展前景。  相似文献   

17.
Necrosis is an ancient topic which gains new attraction in the research area these years. There is no doubt that some necrosis can be regulated by genetic manipulation other than an accidental cell death resulting from physical or chemical stimuli. Recent advances in the molecular mechanism underlying the programmed necrosis show a fine regulation network which indicates new therapy targets in human diseases. Heart diseases seriously endanger our health and have high fatality rates in the patients. Cell death of cardiac myocytes is believed to be critical in the pathogenesis of heart diseases. Although necrosis is likely to play a more important role in cardiac cell death than apoptosis, apoptosis has been paid much attention in the past 30 years because it used to be considered as the only form of programmed cell death. However, recent findings of programmed necrosis and the related signalling pathways have broadened our horizon in the field of programmed cell death and promote new pharmacological application in the treatment of heart diseases. In this review, we summarize the advanced progress in these signalling pathways and discuss the pathos‐physiological relevance and therapeutic implication of targeting necrosis in heart diseases treatment.  相似文献   

18.
正电子放射断层成像技术(Positron Emission Tomography,PET)是广泛应用的功能成像系统,也是分子影像技术之一。PET定量分析为疾病早期诊断、药物疗效评估、疾病发展进程观察提供高灵敏度高精确度的工具。本文介绍PET成像技术中放射性药物动态模型的建立与相关的参数估计分析。  相似文献   

19.
《Phytomedicine》2015,22(13):1163-1171
BackgroundDespite the major advances made in the field of cancer biology, it still remains one of the most fatal diseases in the world. It is now well established that natural products are safe and efficacious and have high potential in the prevention and treatment of different diseases including cancer. Butein is one such compound which is now found to have anti-cancer properties against various malignancies.PurposeTo thoroughly review the literature available on the anti-cancer properties of butein against different cancers and its molecular targets.MethodsA thorough literature search has been done in PubMed for butein, its biological activities especially cancer and its molecular targets.ResultsOur search retrieved several reports on the various biological activities of butein in which around 43 articles reported that butein shows potential anti-proliferative effect against a wide range of neoplasms and the molecular target varies with cancer types. Most often it targets NF-κB and its downstream pathways. In addition, butein induces the expression of genes which mediate the cell death and apoptosis in cancer cells. It also inhibits tumor angiogenesis, invasion and metastasis in prostate, liver and bladder cancers through the inhibition of MMPs, VEGF etc. Moreover, it inhibits the overexpression of several proteins and enzymes such as STAT3, ERK, CXCR4, COX-2, Akt, EGFR, Ras etc. involved in tumorigenesis.ConclusionCollectively, all these findings suggest the enormous potential and efficacy of butein as a multitargeted chemotherapeutic, chemopreventive and chemosensitizing agent against a wide range of cancers with minimal or no adverse side effects.  相似文献   

20.
Inflammatory bowel diseases are represented by ulcerative colitis and Crohn's disease, both consisting of a chronic, uncontrolled inflammation of the intestinal mucosa of any part of the gastrointestinal tract with patchy or continuous inflammation. Ileo‐colonoscopy is considered the current gold standard imaging technique for the diagnosis. However, as the majority of patients need a long‐term follow‐up it would be ideal to rely on a non‐invasive technique with good compliance. This review focuses on nuclear medicine imaging techniques in Crohn's disease. Different scintigraphic methods of imaging cells involved in the pathogenesis are described. The radiopharmaceuticals can be divided into non‐specific radiopharmaceuticals for inflammation and specific radiopharmaceuticals that directly image lymphocytes involved in the process. This non‐invasive molecular imaging approach can be useful also because it images the small bowel or other areas––where colonoscopy is not useful—and that it may play a role for constant follow‐up, because relapses are frequent. Finally, an update on other imaging modalities, and particularly MRI, in the evaluation of Crohn's disease activity, is provided. Although MRI cannot directly detect inflammatory cells, it has shown a high sensitivity in detecting the macroscopic signs of inflammation at the level of the intestinal wall affected by Crohn's disease and Ulcerative colitis. The current diagnostic value of MRI in the detection of inflamed bowel segment and in the assessment of CD activity, as well the potentials MR spectroscopy, MR diffusion imaging and MR molecular imaging, is briefly discussed. J. Cell. Physiol. 223:562–571, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号