首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We tested whether gouging by Callithrix jacchus affects tree survival. The proportion of dead gouged trees was higher than the proportion of dead non-gouged trees, with larger effects on smaller trees. The number of holes did not affect tree survival. Tree-gouging by marmosets may enhance forest turnover.  相似文献   

2.
We report the exudate feeding behavior of two groups of marmosets (Callithrix jacchus penicillata) living permanently in Cerradão, a common woodland formation of Central Brazil. Cerradão is an open canopy formation and marmosets must occasionally descend to the ground in order to move from tree to tree. Even in atypical habitat, exudate eating is the predominant foraging activity. Marmosets are engaged in exudate collection over 70% of the total time spent feeding. They were observed gnawing on seven species of trees, and consumed exudates from four of these species. We compared the degree of utilization of the exudate sources, and examined a number of different characteristics of the exudates. Morphological adaptations that allow for the exploitation of the “exudate-eater niche” may be an important component of the adaptability ofCallithrix marmosets.  相似文献   

3.
Marmosets (Callithrix, Cebuella) in the wild gouge wells in trees and eat the exudates that accumulate there. An artificial gum-tree was made of wooden dowel and filled with Acacia Senegal exudate (gum arabic) dissolved in water. Three families of marmosets avidly gouged and consumed gum from this device, showing all of the behavioral patterns described in nature. The gum-tree cost little and was easy to make.  相似文献   

4.
Common (Callithrix jacchus) and pygmy (Cebuella pygmaea) marmosets and cotton‐top tamarins (Saguinus oedipus) share broadly similar diets of fruits, insects, and tree exudates. Marmosets, however, differ from tamarins in actively gouging trees with their anterior dentition to elicit tree exudates flow. Tree gouging in common marmosets involves the generation of relatively wide jaw gapes, but not necessarily relatively large bite forces. We compared fiber architecture of the masseter and temporalis muscles in C. jacchus (N = 18), C. pygmaea (N = 5), and S. oedipus (N = 13). We tested the hypothesis that tree‐gouging marmosets would exhibit relatively longer fibers and other architectural variables that facilitate muscle stretch. As an architectural trade‐off between maximizing muscle excursion/contraction velocity and muscle force, we also tested the hypothesis that marmosets would exhibit relatively less pinnate fibers, smaller physiologic cross‐sectional areas (PCSA), and lower priority indices (I) for force. As predicted, marmosets display relatively longer‐fibered muscles, a higher ratio of fiber length to muscle mass, and a relatively greater potential excursion of the distal tendon attachments, all of which favor muscle stretch. Marmosets further display relatively smaller PCSAs and other features that reflect a reduced capacity for force generation. The longer fibers and attendant higher contraction velocities likely facilitate the production of relatively wide jaw gapes and the capacity to generate more power from their jaw muscles during gouging. The observed functional trade‐off between muscle excursion/contraction velocity and muscle force suggests that primate jaw‐muscle architecture reflects evolutionary changes related to jaw movements as one of a number of functional demands imposed on the masticatory apparatus. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Spider monkeys (Ateles geoffroyi) use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively). Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure) of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations typical of the southeastern Mexican rainforest, such as Terminalia-Dialium, and Brosimum-Dialium.  相似文献   

6.
Common marmosets (Callithrix jacchus) and cotton-top tamarins (Saguinus oedipus) (Callitrichidae, Primates) share a broadly similar diet of fruits, insects, and tree exudates. Common marmosets, however, differ from tamarins by actively gouging trees with their anterior teeth to elicit tree exudate flow. During tree gouging, marmosets produce relatively large jaw gapes, but do not necessarily produce relatively large bite forces at the anterior teeth. We compared the fiber architecture of the masseter muscle in tree-gouging Callithrix jacchus (n = 10) to nongouging Saguinus oedipus (n = 8) to determine whether the marmoset masseter facilitates producing these large gapes during tree gouging. We predict that the marmoset masseter has relatively longer fibers and, hence, greater potential muscle excursion (i.e., a greater range of motion through increased muscle stretch). Conversely, because of the expected trade-off between excursion and force production in muscle architecture, we predict that the cotton-top tamarin masseter has more pinnate fibers and increased physiological cross-sectional area (PCSA) as compared to common marmosets. Likewise, the S. oedipus masseter is predicted to have a greater proportion of tendon relative to muscle fiber as compared to the common marmoset masseter. Common marmosets have absolutely and relatively longer masseter fibers than cotton-top tamarins. Given that fiber length is directly proportional to muscle excursion and by extension contraction velocity, this result suggests that marmosets have masseters designed for relatively greater stretching and, hence, larger gapes. Conversely, the cotton-top tamarin masseter has a greater angle of pinnation (but not significantly so), larger PCSA, and higher proportion of tendon. The significantly larger PCSA in the tamarin masseter suggests that their masseter has relatively greater force production capabilities as compared to marmosets. Collectively, these results suggest that the fiber architecture of the common marmoset masseter is part of a suite of features of the masticatory apparatus that facilitates the production of relatively large gapes during tree gouging.  相似文献   

7.
Fallback foods have been defined as resources for which a species has evolved specific masticatory and digestive adaptations, and are consumed principally when preferred foods are scarce. In the present field investigation, we examine fungi, fruit, and exudate consumption in one group of Callimico goeldii in order to determine the importance of exudates as a fallback food for this species. Based on a total of 1,198 hr of quantitative behavioral data collected between mid-November 2002-August 2003, we found that pod exudates of Parkia velutina accounted for 19% of callimico feeding time in the dry season. This resource was not consumed in the wet season when fruits and fungi were the most common items in the diet. In the dry season of 2005 (July), the same callimico study group did not consume Parkia pod exudates. Instead, the group ate exudates obtained from holes gouged in tree trunks by pygmy marmosets and exudates resulting from natural weathering and insect damage on trunks, roots, and lianas. Pod exudates are reported to contain greater amounts of readily available energy than do trunk and root exudates, and were consumed throughout all periods of the day, particularly in the late afternoon. Trunk and root exudates were consumed principally in the morning. We propose that digestive adaptations of the hindgut, which enable callimicos to exploit fungi (a resource high in structural carbohydrates) year-round, predispose them to efficiently exploit and process exudates as fallback foods when other resources, such as ripe fruits, are scarce.  相似文献   

8.
Local variations in fruit- and leaf-eating have been reported for some primate species; however, similar variations in exudate-feeding of pygmy marmosets, one of the most specialized neotropical primate species, have not been studied. In our 3-year study of four populations of pygmy marmosets in northeastern Ecuador, we characterized their exudate-feeding behavior by describing the use of exudate sources. We tested whether the use of exudate species was related to ecological factors such as the availability of exudate species in an area. We estimated the daily activity budgets of the groups with 1-hr scan samples and found significant interpopulation differences in the time spent on exudate feeding. We recorded a total of 18 exudate species used in the four populations; however, the populations differed in the total number of species used and in the preferred species. The most commonly used plant species were Sterculia apetala at San Pablo, Cedrela odorata at Sacha, Inga marginata at Amazoonico, and Parkia balslevii at Zancudo. We recorded the presence and abundance of the 18 exudate species in 90-m transects in the home range of each group and in one additional control area that contained no marmosets, for each population. Differences in the most-used exudate species among populations did not appear to be related to the availability of these species in each population, i.e., the marmosets did not use at random the exudate species available within their range, nor did they use more often the exudate species that were more abundant in their home ranges. One implication of our results for conservation is that protecting exudate resources based on data from only one area will not be sufficient to preserve pygmy marmosets in all populations.  相似文献   

9.
Marmosets of the genus Callithrix are specialized in the consumption of tree exudates to obtain essential nutritional resource by boring holes into bark with teeth. However, marmoset preferences for particular tree species, location, type, and other suitable factors that aid in exudate acquisition need further research. In the current study, the intensity of exudate use from Anadenanthera peregrina var. peregrina trees by hybrid marmosets Callithrix spp. groups was studied in five forest fragments in Viçosa, in the state of Minas, Brazil. Thirty-nine A. peregrina var. peregrina trees were examined and 8,765 active and non-active holes were analyzed. The trunk of A. peregrina var. peregrina had a lower number of holes than the canopy: 11% were found on the trunk and 89% were found on the canopy. The upper canopy was the preferred area by Callithrix spp. for obtaining exudates. The intensity of tree exploitation by marmosets showed a moderate-to-weak correlation with diameter at breast height (DBH) and total tree height. The overall results indicate that Anadenanthera peregrina var. peregrina provides food resources for hybrid marmosets (Callithrix spp.) and these animals prefer to explore this resource on the apical parts of the plant, where the thickness, location, and age of the branches are the main features involved in the acquisition of exudates.  相似文献   

10.
Although all genera of Callitrichinae feed on tree exudates, marmosets (Callithrix and Cebuella) use specialized anterior teeth to gouge holes in trees and actively stimulate exudate flow. Behavioral studies demonstrate that marmosets use large jaw gapes but do not appear to generate large bite forces (relative to maximal ability) during gouging. Nonetheless, the anterior teeth of marmosets likely experience different loads during gouging compared to nongouging platyrrhines. We use histological data from sectioned teeth, μCTs of jaws and teeth, and in vitro tests of symphyseal strength to compare the anterior masticatory apparatus in Callithrix to nongouging tamarins (Saguinus) and other cebids. We test the hypotheses that (1) marmoset anterior teeth are adapted to accommodate relatively high stresses linked to dissipating gouging forces and (2) the mandibular symphysis does not provide increased load resistance ability compared with closely related nongouging platyrrhines. Differences in decussation between Callithrix and Saguinus are greatest in the anterior teeth, suggesting an increased load resistance ability specifically in incisor and canine enamel of Callithrix. Callithrix lower incisor crowns are labiolingually thicker suggesting increased bending resistance in this plane and improved wedging ability compared with Saguinus. Anterior tooth roots are larger relative to symphyseal bone volume in Callithrix. Anterior tooth root surface areas also are larger in marmosets for their symphyseal volume, but it remains unclear whether this relative increase is an adaptation for dissipating dental stresses versus a growth‐related byproduct of relatively elongated incisors. Finally, simulated jaw loading suggests a reduced ability to withstand external forces in the Callithrix symphysis. The contrast between increased load resistance ability in the anterior dentition versus relatively reduced symphyseal strength (1) suggests a complex loading environment during gouging, (2) highlights the possibility of distinct loading patterns in the anterior teeth versus the symphysis, and (3) points to a potential mosaic pattern of dentofacial adaptations to tree gouging. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
Abstract The spatial pattern of dry rainforest and savanna tree species was analysed in a 1.56‐ha plot within an unburnt eucalypt savanna woodland in north Queensland, Australia. Rainforest colonization constituted only 1.3% of the basal area and mostly consisted of individuals less than 3 m high. The distribution of rainforest trees was highly clumped around the large savanna eucalypt trees. Ecological mechanisms generating the clumped distribution are discussed in light of evidence from this study and the literature. Herbaceous biomass was not reduced under trees, suggesting that relief from grass competition has not favoured rainforest colonization under tree crowns. Edaphic facilitation through nutrient enrichment under savanna tree crowns appears to be only minor on the moderate fertility soils of the area. The highly clumped pattern of colonizing dry rainforest may be a consequence of seeds dropped from birds roosting in savanna trees.  相似文献   

12.
Many primates habitually feed on tree exudates such as gums and saps. Among these exudate feeders, Cebuella pygmaea, Callithrix spp., Phaner furcifer, and most likely Euoticus elegantulus elicit exudate flow by biting into trees with their anterior dentition. We define this behavior as gouging. Beyond the recent publication by Dumont ([1997] Am J Phys Anthropol 102:187-202), there have been few attempts to address whether any aspect of skull form in gouging primates relates to this specialized feeding behavior. However, many researchers have proposed that tree gouging results in larger bite force, larger internal skull loads, and larger jaw gapes in comparison to other chewing and biting behaviors. If true, then we might expect primate gougers to exhibit skull modifications that provide increased abilities to produce bite forces at the incisors, withstand loads in the skull, and/or generate large gapes for gouging.We develop 13 morphological predictions based on the expectation that gouging involves relatively large jaw forces and/or jaw gapes. We compare skull shapes for P. furcifer to five cheirogaleid taxa, E. elegantulus to six galagid species, and C. jacchus to two tamarin species, so as to assess whether gouging primates exhibit these predicted morphological shapes. Our results show little morphological evidence for increased force-production or load-resistance abilities in the skulls of these gouging primates. Conversely, these gougers tend to have skull shapes that are advantageous for creating large gapes. For example, all three gouging species have significantly lower condylar heights relative to the toothrow at a given mandibular length in comparison with closely related, nongouging taxa. Lowering the height of the condyle relative to the mandibular toothrow should reduce the stretching of the masseters and medial pterygoids during jaw opening, as well as position the mandibular incisors more anteriorly at wide jaw gapes. In other words, the lower incisors will follow a more vertical trajectory during both jaw opening and closing.We predict, based on these findings, that tree-gouging primates do not generate unusually large forces, but that they do use relatively large gapes during gouging. Of course, in vivo data on jaw forces and jaw gapes are required to reliably assess skull functions during gouging.  相似文献   

13.
The ecological role of the callitrichidae: a review   总被引:3,自引:0,他引:3  
The marmosets and tamarins fill a unique ecological role among the anthropoid primates, one that has not been fully recognized. Many misconceptions--that they are primitive, monogamous, territorial, and squirrellike--pervade the literature. These misconceptions are largely the result of misinterpreting laboratory studies which have not been confirmed with identified animals in natural habitats. Recent field studies, reviewed here, indicate that marmosets and tamarins have a highly derived ecological role, are not monogamous, feed largely on insects and plant exudates, and have uniquely specialized positional behavior involving clinging to vertical tree trunks in order to feed on exudates. Accompanying these behavioral traits are a number clawlike nails on all digits except the hallux, and a three-cusped upper molar morphology. These form a suite of characteristics unique among the living primates, many of which are related to their ecological role. We believe that the marmosets and tamarins are members of a guild of exudate feeders in which plant exudates are an important component of the diet. It is within this framework of a primate foraging guild that we can best understand many of their morphological and behavioral adaptations.  相似文献   

14.
Among primates, some highly gummivorous species habitually gouge trees to elicit exudate flow whereas others scrape the hardened gums from trees. These foraging behaviors are thought to require high external forces at the anterior dentition. In this study, we test whether skull form in gouging and scraping galagids corresponds to this suggested need to produce these higher external forces and to resist increased internal loads in the jaws. We find few consistent morphological patterns linking skull form and the generation of high forces during gouging. However, there is some tendency for gougers and scrapers to show increased load resistance capabilities in their mandibles. Future research on the mechanical properties of trees exploited by these species and on jaw function during gouging and scraping will improve our understanding of the mechanical demands of gum feeding on the galagid skull form.  相似文献   

15.
Three wild groups of common marmoset, Callithrix jacchus jacchus,in north-east Brazil, of approximately similar size, had home ranges between 2.5 and 6.5 ha. But their core areas were similar in size between 1.0 and 1.5 ha, with a monthly area of heavy use between 1.1 and 1.6 ha. The groups were selective in the use of their home ranges, even though they were small: they used some areas heavily and others lightly. The core areas had higher densities of trees that produced gum exudates than did other parts of the home ranges. Our data suggest that a group of marmosets in this habitat may require a minimum of about 50 gum trees in its home range at a minimum density of about 50 trees/ha. In addition, the animals require suitable trees in which to sleep. We suggest that patches of forest with these desirable properties remain relatively fixed in size and location over the years and that individual animals are constantly in flux between them.  相似文献   

16.
Nearest tree neighbour distances and the tree spatial formation on a large scale over time and space replicates were examined. The study was conducted in a natural savanna ecosystem in the Southern Kalahari, South Africa. Nearest tree neighbour and point pattern analysis methods were used to investigate changes in the spatial pattern of trees in two plots. Trees larger than 2 m canopy diameter were mapped. We used aerial photographs of the study area from 1940, 1964, 1984, 1993, and a satellite image from 2001 to follow two plots over time. Field work was carried out too for classification accuracy. We were able to identify and individually follow over 2400 individual trees from 1940 until 2001. Nearest neighbour analysis results indicate that dead trees were on average closer to their nearest neighbouring trees than living trees were to their neighbours. Most dead trees were on average 6 m from their nearest neighbours, while most living trees were about 20 m apart. Point pattern analysis results show a cyclical transition from clumped to random and sequentially to regular tree spacing. These transitions were not correlated across two plots. Generally, decreases in small-scale clumping coincided with periods of high mortality. Our findings show that regular, clumped, and random tree pattern can occur, pending on time, location, and scale within the location.  相似文献   

17.
18.
The infections of two species of mistletoes in Baja California, Mexico were investigated for spatial patterns of abundance, and for an effect of the dispersal patterns of mistletoe seeds on these spatial patterns. Mistletoe distributions were mapped and the dispersal of mistletoe seeds was observed. Most mistletoes seeds were dispersed locally to the parent tree or to nearby trees. While mistletoe distributions were highly clumped at the level of the individual tree, no spatial pattern was found above the scale of the individual tree. Infected trees were no more clumped than the overall host population, and infected trees had no more mistletoes on nearby surrounding trees than did uninfected trees. Trees showed no spatial autocorrelation in the number of mistletoes they supported. Simulations using a spatially explicit simulation model with local dispersal and stochasticity in seed dispersal, host mortality, and mistletoe mortality were used to interpret the field results. Simulation results suggest that dispersal patterns affect the overall level of variance in the number of mistletoes per tree but do not lead to spatial patterns in abundance above the scale of the tree. Thus, both simulation and field systems give the surprising result that local dispersal does not lead to spatial autocorrelation in the numbers of mistletoes per tree.Abbreviations AI = Arroyo Inspiracion - VSR = Valle San Rafael  相似文献   

19.
The analysis of spatial patterns is one of the ways to estimate the role of competition among trees in forest dynamics. Three hypotheses concerning distribution patterns in old-growth stands were tested: (1) fine-scale spatial patterns of trees are regular; (2) patterns do not differ significantly from a random distribution, and (3) spatial patterns at larger scales are clumped because of site heterogeneity. Old-growth forest stands in Poland and the Czech Republic were analysed with a modified Ripley K function, using distribution maps of tree stems. Fine-scale spatial patterns (with distances among trees not exceeding 15 m) were usually intermediate between random and regular. Trends towards a regular distribution occurred more often among dead than among live individuals. No significant relationships between tree species were found at smaller scales; however, at larger scales (distances from 15–25 m) negative associations between some species were found. This reflects site heterogeneity rather than any direct influence of one tree species upon another.  相似文献   

20.
Mycophagy is a relatively rare behavior in primates and has only been recorded in five callitrichid species. Here, we present data on the feeding ecology of a free‐ranging group of Callithrix flaviceps, which was studied in the Augusto Ruschi Biological Reserve, Southeastern Brazil, in 2008. In contrast with other marmosets, which are typically gummivorous, the study group was predominantly mycophagous–insectivorous, with fungi corresponding to 64.8% of total feeding records, and gum (6.1%) and fruit (3.3%) together providing only a minor part of the diet. Prey corresponded to 25.8% of the group's diet. The fungi (Mycocitrus spp.) consumed by the marmosets were found attached to the stems of Merostachys bamboo. As the animal component of the group's diet was similar to that recorded in studies of other marmosets, we propose that fungi were exploited primarily as a substitute for plant material, in particular exudates. This highly mycophagous diet may be determined by two principal factors: (1) the abundance of fungi within the study area, and (2) the avoidance of bark gouging, for which C. flaviceps may be less specialized than most other marmosets. These conclusions are supported by comparisons with other marmoset groups, which indicate an ecological specialization for mycophagy in C. flaviceps, and that the species will resort to gummivory in habitats where fungi are scarce. Am. J. Primatol. 72:515–521, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号