首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report a novel procedure, which can be applied to probing of specific DNA, for covalently attaching probe DNA to complementary sequences in double-stranded target DNA. Employing hairpin-like oligonucleotide probes in combination with successive use of recA protein and DNA ligase, probes can be attached directly to target DNA molecules without dissociation of the DNA. The hairpin-like structure of the probes was designed so that the terminus of the probe oligonucleotide can be brought into close stereochemical proximity to the terminus of the complementary strand of target DNA for ligation. Because of the elimination of the DNA dissociation and subsequent hybridization (and washing) steps in the currently employed method, the probing process has become greatly simplified and more efficient and may lead to development of fully automated probing systems.  相似文献   

2.
3.
Potential applications of DNA microarrays in biodefense-related diagnostics   总被引:4,自引:0,他引:4  
Recent years have witnessed a logarithmic growth in the number of applications involving DNA microarrays. Extrapolation of their use for infectious diagnostics and biodefense-related diagnostics seems obvious. Nevertheless, the application of DNA microarrays to biodefense-related diagnostics will depend on solving a set of substantial, yet approachable, technical and logistical problems that encompass diverse topics from amplification efficiency to bioinformatics.  相似文献   

4.
DNA从头合成技术是指以寡核苷酸链为起始的合成DNA片段的技术,其不断进步是合成生物学快速发展的基石之一。常规使用的连接介导的DNA合成技术和PCR介导的DNA合成技术日益成熟,精确合成长度已经达到0.5—1kb。微阵列介导的DNA合成技术不断发展,其低成本、高通量的特点吸引了人们的注意;而酵母体内DNA合成技术的成功探索也为体外DNA合成提供了一种补偿方法。DNA合成在优化密码子用于异源表达、构建异源代谢途径、合成人工基因组以及合成减毒病毒用于疫苗研制等方面有广泛应用。综述了DNA从头合成技术的研究进展,并介绍了DNA合成的前沿应用。  相似文献   

5.
Since the pioneer experiments conducted by Friedrich Miescher in 1861, extraordinary advances have been achieved in the field of DNA handling. Today nucleic acids can be extracted from any type of biological material such as tissues, cells and viruses. Moreover, increasing knowledge of human genome is paving the way to an effective employment of pharmacogenomics and genetic-based predictive tests in medicine. In this context, the recovery of DNA from different sources of biological samples (e.g. archived formalin-fixed autopsy tissues, dried blood spots, frozen serum or plasma, long-term stored whole blood) is also an emerging field in genetic epidemiology studies. Thus, given the crucial role played by DNA in bio-medical research and in its related applications, here we review the main relevant issued patents and recently published advances in the field of DNA extraction and purification from human specimens.  相似文献   

6.
Rapid molecular biological methods for prenatal diagnosis of the most common aneuploidies, collectively known as rapid aneuploidy testing, are compared in this review. We discuss methodological problems and limitations of these various methods. All these techniques are believed to be accurate and carry a low risk of misdiagnosis, but they differ in terms of labour-intensity and amenability to automation and high throughput testing. The question how to apply them safely and economically in a clinical setting has not been answered yet. The discussed techniques are so far not used as stand-alone tests, but some of them are routinely applied as a preliminary test that shortens the waiting time for classic cytogenetic karyotyping. In the future, mainly because of economical reasons, these methods may replace cytogenetics in the category of patients who make up the majority of those currently offered prenatal karyotyping: patients with moderately increased risk and no abnormalities detected by ultrasound.  相似文献   

7.
DNA methylation: a profile of methods and applications   总被引:27,自引:0,他引:27  
Fraga MF  Esteller M 《BioTechniques》2002,33(3):632, 634, 636-632, 634, 649
Ever since methylcytosine was found in genomic DNA, this epigenetic alteration has become a center of scientific attraction, especially because of its relation to gene silencing in disease. There is currently a wide range of methods designed to yield quantitative and qualitative information on genomic DNA methylation. The earliest approaches were concentrated on the study of overall levels of methylcytosine, but more recent efforts havefocused on the study ofthe methylation status of specific DNA sequences. Particularly, optimization of the methods based on bisulfite modification of DNA permits the analysis of limited CpGs in restriction enzyme sites (e.g., combined bisulfite restriction analyses and methylation-sensitive single nucleotide primer extension) and the overall characterization based on differential methylation states (e.g., methylation-specific PCR, MethyLight, and methylation-sensitive single-stranded conformational polymorphism) and allows very specific patterns of methylation to be revealed (bisulfite DNA sequencing). In addition, novel methods designed to search for new methylcytosine hot spots have yielded further data without requiring prior knowledge of the DNA sequence. We hope this review will be a valuable tool in selecting the best techniques to address particular questions concerning the cytosine methylation status of genomic DNA.  相似文献   

8.
9.
Molecular methods for typing of Helicobacter pylori and their applications   总被引:4,自引:0,他引:4  
Microbial typing is a useful tool in clinical epidemiology for defining the source and route of infection, for studying the persistence and reinfection rates, clonal selection in the host and bacterial evolution. Phenotypic methods such as biotyping, serotyping and hemagglutinin typing have little discriminatory power compared to genotypic methods concerning the typing of Helicobacter pylori. Therefore great efforts have been made to establish useful molecular typing methods. In this context, the most frequently used genotypic methods are described based on our own experience and the literature: (1) restriction endonuclease analysis, (2) endonuclease analysis using pulsed-field gel electrophoresis, (3) ribotyping, (4) polymerase chain reaction (using either random primers or repetitive DNA sequence primers), and (5) polymerase chain reaction-restriction fragment length polymorphism analysis of e.g. the urease genes. Furthermore, reproducibility, discriminatory power, ease of performance and interpretation, cost and toxic procedures of each method are assessed. To date no direct comparison of all the molecular typing methods described has been performed in the same study with the same H. pylori strains. However, PCR analysis of the urease gene directly on suspensions of H. pylori or gastric biopsy material seems to be useful for routine use and applicable in specific epidemiological situations.  相似文献   

10.
Cryptosporidiosis is a zoonotic disease caused by a parasitic protozoan belonging to the coccidial genus Cryptosporidium. Current laboratory methods are adequate for the detection of the infection when oocysts are present in great numbers, but more-sensitive means of identification are urgently required. In a recent issue of Parasitology Today, Carolyn Petersen has presented a review of the cell biology of this parasite'. Here, Kath Webster draws attention to the various methods involved in its detection and classification.  相似文献   

11.
Transamination at 100 degrees C of cytosines in denatured double-strand DNA is a rapid and reliable method to obtain DNA molecules containing N4-aminoethylcytosine (4aeC), which can be quantitatively conjugated to biotinyl-N-hydroxysuccinimide ester (BHS) at 37 degrees C, yielding chemically labelled probes for molecular hybridization. The adopted transamination reaction temperature allows for a ten-fold reduction of the time required for labelling at 42 degrees C, and probes obtained by this procedure are equally effective for general use in molecular biology. Dot-blots with 1-5 pg of target lambda DNA were detected by streptavidin-acid phosphatase complex after hybridization with its homologous sequences. Chemically biotinylated mouse satellite DNA has been used in combination with avidin-horseradish peroxidase to detect metaphase and interphase centromeres via in situ hybridization. Moreover probes labelled with differentially spaced linker arms were prepared by this method.  相似文献   

12.
A real-time, label free assay was developed for microbial detection, utilizing double-stranded DNA targets and employing the next generation of an impedimetric sensor array platform designed by Sharp Laboratories of America (SLA). Real-time curves of the impedimetric signal response were obtained at fixed frequency and voltage for target binding to oligonucleotide probes attached to the sensor array surface. Kinetic parameters of these curves were analyzed by the integrated data analysis package for signal quantification. Non-specific binding presented a major challenge for assay development, and required assay optimization. For this, differences were maximized between binding curve kinetic parameters for probes binding to complementary targets versus non-target controls. Variables manipulated for assay optimization included target concentration, hybridization temperature, buffer concentration, and the use of surfactants. Our results showed that (i) different target-probe combinations required optimization of specific sets of variables; (ii) for each assay condition, the optimum range was relatively narrow, and had to be determined empirically; and (iii) outside of the optimum range, the assay could not distinguish between specific and non-specific binding. For each target-probe combination evaluated, conditions resulting in good separation between specific and non-specific binding signals were established, generating high confidence in the SLA impedimetric dsDNA assay results.  相似文献   

13.
Dirk Stigter 《Biopolymers》1977,16(7):1435-1448
This paper presents new applications of the McMillan-Mayer solution theory to dispersions of highly charged colloidal cylinders in monovalent salt solutions. The thermodynamic solution properties are given in terms of the virial expansions relating to a Donnan membrane equilibrium. General expressions are derived for the second Donnan pressure virial coefficient B2 and for the first two salt distribution coefficients A1 and A2. The effect of electric interactions is represented as an increased effective diameter dB or dA of the colloidal cylinder. This yields the simple excluded volume expressions B2 = πdBL2/4 and A1 = πdA2L/4 for hard cylinders of length L and diameter dB and dA, respectively. The coefficient A2 is derived from the dependence of B2 on the salt concentration. Computations are made for double-stranded DNA in sodium chloride solutions with the DNA model developed in the preceding paper: a uniformly charged cylinder, with size and charge consistent with transport experiments, and surrounded by a Gouy double layer. In 1–0.005M sodium chloride solutions dB is found to vary from 29 Å to about 220 Å, and dA from 30 Å to about 170 Å, with little sensitivity to the uncertainties in the kinetic diameter d ≈ 24 Å and the experimental ζ potentials of DNA. Corresponding results predicted by the classical Donnan theory are 6–167 times too high for B2. Values of A2 are relatively small, in line with the expected rapid convergence of the virial expansion for the salt distribution. This is consistent with a phase transition from random to parallel orientation of the cylinders predicted first by Onsager for hard cylinders on the basis of B2, but not yet observed for DNA in simple salt solutions.  相似文献   

14.
In the coming years, molecular diagnostics will continue to be of critical importance to public health worldwide. It will facilitate the detection and characterization of disease, as well as monitoring of the drug response, and will assist in the identification of genetic modifiers and disease susceptibility. A wide range of molecular-based tests is available to assess DNA variation and changes in gene expression. However, there are major hurdles to overcome before the implementation of these tests in clinical laboratories, such as which test to employ, the choice of technology and equipment, and issues such as cost-effectiveness, accuracy, reproducibility, personnel training, reimbursement by third-party payers and intellectual property. At present, PCR-based testing predominates; however, alternative technologies aimed at reducing genome complexity without PCR are anticipated to gain momentum in the coming years. Furthermore, development of integrated chip devices ("lab-on-a-chip") should allow point-of-care testing and facilitate genetic readouts from single cells and molecules. Together with proteomic-based testing, these advances will improve molecular diagnostic testing and will present additional challenges for implementing such testing in health care settings.  相似文献   

15.
16.
A novel reagentless direct electrochemical DNA sensor has been developed using ultrathin films of the conducting polymer polypyrrole doped with an oligonucleotide probe. Our goal was to develop a prototype electrochemical DNA sensor for detection of a biowarfare pathogen, variola major virus. The sensor has been optimized for higher specificity and sensitivity. It was possible to detect 1.6 fmol of complementary oligonucleotide target in 0.1 ml in seconds by using chronoamperometry. The sensitivity of the developed sensor is comparable to indirect electrochemical DNA sensors, which use electrochemical labels and reagent-intensive amplification. The developed sensing electrode is reusable, highly stable and suitable for storage in solution or in dry state.  相似文献   

17.
Investigation of viruses in the environment often requires the amplification of viral DNA before sequencing of viral metagenomes. In this study, two of the most widely used amplification methods, the linker amplified shotgun library (LASL) and multiple displacement amplification (MDA) methods, were applied to a sample from the seawater surface. Viral DNA was extracted from viruses concentrated by tangential flow filtration and amplified by these two methods. 454 pyrosequencing was used to read the metagenomic sequences from different libraries. The resulting taxonomic classifications of the viruses, their functional assignments, and assembly patterns differed substantially depending on the amplification method. Only double-stranded DNA viruses were retrieved from the LASL, whereas most sequences in the MDA library were from single-stranded DNA viruses, and double-stranded DNA viral sequences were minorities. Thus, the two amplification methods reveal different aspects of viral diversity.  相似文献   

18.
Fish species identification is traditionally based on external morphological features. Yet, in many cases fishes and especially their diverse developmental stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative. This work intends to provide an updated and extensive overview on the PCR-methods for fish species identification. Among the ten main methods developed, three PCR-RFLP, PCR-FINS and PCR-specific primers have been the most used. Two other emerging methods, namely real-time PCR and microarray technology, offer new potential for quantification of DNA and simultaneous detection of numerous species, respectively. Almost 500 species have been targeted in the past decade, among which the most studied belong to gadoids, scombroids, and salmonids. The mitochondrial cytochrome b gene was by far the most targeted DNA markers. The most common applications belonged to the forensic, taxonomic, and ecological fields. At last, some key problems, such as the degradation of DNA, the reliability of sequences, and the use of scientific names, likely to be encountered during the development of molecular identification methods are described. In conclusion, the tremendous advances in molecular biology in the past 10 years has rendered possible the study of DNA from virtually any substrates, offering new perspectives for the development of various applications, which will likely continue to increase in the future.  相似文献   

19.
When PCR is carried out in a polyacrylamide gel, each target molecule forms a molecular colony that comprises many copies of the original template. By counting the number of colonies, one can directly determine the target titer, with 100% of the DNA molecules and approximately 15% of the RNA molecules being detected. Furthermore, because of the spatial separation of the products in the gel, no interference is observedfrom another simultaneously amplified target even if it is present at a 106 higher amount orfrom human nucleic acids that outweigh the target by up to a factor of 1,012, which is often true of clinical samples. All these features provide for an accurate and reliable assay of viruses even at very low amounts, that is, in cases most important to diagnostics.  相似文献   

20.
The synthesis, proof of structure, and the absorption and fluorescence properties of two new unsymmetrical cyanine dyes, thiazole orange dimer (TOTO; 1,1'-(4,4,7,7-tetramethyl-4,7- diazaundecamethylene)-bis-4-[3-methyl-2,3-dihydro-(benzo-1,3-thiaz ole)-2- methylidene]-quinolinium tetraiodide) and oxazole yellow dimer (YOYO; an analogue of TOTO with a benzo-1,3-oxazole in place of the benzo-1,3-thiazole) are reported. TOTO and YOYO are virtually non-fluorescent in solution, but form highly fluorescent complexes with double-stranded DNA (dsDNA), up to a maximum dye to DNA bp ratio of 1:4, with greater than 1000-fold fluorescence enhancement. The dsDNA-TOTO (lambda max 513 nm; lambda maxF 532 nm) and dsDNA-YOYO (lambda max 489 nm; lambda maxF 509 nm) complexes are completely stable to electrophoresis on agarose and acrylamide gels. Mixtures of restriction fragments pre-labeled with ethidium dimer (EthD; lambda maxF 616 nm) and those pre-labeled with either TOTO or YOYO were separated by electrophoresis. Laser excitation at 488 nm and simultaneous confocal fluorescence detection at 620-750 nm (dsDNA-EthD emission) and 500-565 nm (dsDNA-TOTO or dsDNA-YOYO emission) allowed sensitive detection, quantitation, and accurate sizing of restriction fragments ranging from 600 to 24,000 bp. The limit of detection of dsDNA-TOTO and YOYO complexes with a laser-excited confocal fluorescence gel scanner for a band 5-mm wide on a 1-mm thick agarose gel was 4 picograms, about 500-fold lower than attainable by conventional staining with ethidium bromide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号