首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microvascular endothelial cells play a key role in inflammation by undergoing activation and recruiting circulating immune cells into tissues and foci of inflammation, an early and rate-limiting step in the inflammatory process. We have previously [Binion et al., Gastroenterology112:1898-1907, 1997] shown that human intestinal microvascular endothelial cells (HIMEC) isolated from surgically resected inflammatory bowel disease (IBD) patient tissue demonstrate significantly increased leukocyte binding in vitro compared to normal HIMEC. Our studies [Binion et al., Am. J. Physiol.275 (Gastrointest. Liver Physiol. 38):G592-G603, 1998] have also demonstrated that nitric oxide (NO) production by inducible nitric oxide synthase (iNOS) normally plays a key role in downregulating HIMEC activation and leukocyte adhesion. Using primary cultures of HIMEC derived from normal and IBD patient tissues, we sought to determine whether alterations in iNOS-derived NO production underlies leukocyte hyperadhesion in IBD. Both nonselective (N(G)-monomethyl-L-arginine) and specific (N-Iminoethyl-L-lysine) inhibitors of iNOS significantly increased leukocyte binding by normal HIMEC activated with cytokines and lipopolysaccharide (LPS), but had no effect on leukocyte adhesion by similarly activated IBD HIMEC. When compared to normal HIMEC, IBD endothelial cells had significantly decreased levels of iNOS mRNA, protein, and NO production following activation. Addition of exogenous NO by co-culture with normal HIMEC or by pharmacologic delivery with the long-acting NO donor detaNONOate restored a normal leukocyte binding pattern in the IBD HIMEC. These data suggest that loss of iNOS expression is a feature of chronically inflamed microvascular endothelial cells, which leads to enhanced leukocyte binding, potentially contributing to chronic, destructive inflammation in IBD.  相似文献   

2.
Accumulative indoxyl sulfate (IS) retained in chronic kidney disease (CKD) can potentiate vascular endothelial dysfunction, and herein, we aim at elucidating the underlying mechanisms from the perspective of possible association between reactive oxygen species (ROS) and RhoA/ROCK pathway. IS-treated nephrectomized rats are administered with antioxidants including NADPH oxidase inhibitor apocynin, SOD analog tempol, and mitochondrion-targeted SOD mimetic mito-TEMPO to scavenge ROS, or ROCK inhibitor fasudil to obstruct RhoA/ROCK pathway. First, we find in response to IS stimulation, antioxidants treatments suppress increased aortic ROCK activity and expression levels. Additionally, ROCK blockade prevent IS-induced increased NADPH oxidase expression (mainly p22phox and p47phox), mitochondrial and intracellular ROS (superoxide and hydrogen peroxide) generation, and decreased Cu/Zn-SOD expression in thoracic aortas. Apocynin, mito-TEMPO, and tempol also reverse these markers of oxidative stress. These results suggest that IS induces excessive ROS production and ROCK activation involving a circuitous relationship in which ROS activate ROCK and ROCK promotes ROS overproduction. Finally, ROS and ROCK depletion attenuate IS-induced decrease in nitric oxide (NO) production and eNOS expression levels, and alleviate impaired vasomotor responses including increased vasocontraction to phenylephrine and decreased vasorelaxation to acetylcholine, thereby preventing cardiovascular complications accompanied by CKD. Taken together, excessive ROS derived from NADPH oxidase and mitochondria coordinate with RhoA/ROCK activation in a form of positive reciprocal relationship to induce endothelial dysfunction through disturbing endothelium-dependent NO signaling upon IS stimulation in CKD status.  相似文献   

3.
The CD40/CD40 ligand (CD40L) pathway is involved in Crohn's disease (CD) pathogenesis. In the patients' circulation, soluble CD40L (sCD40L) levels are elevated and surface CD40L is increased in platelets and T cells, whereas in the intestine CD40 is overexpressed in the microvasculature and CD40L in platelets and T cells. The therapeutic effects of infliximab in CD are attributed to its systemic anti-TNF-alpha action, but because TNF-alpha modulates both CD40 and CD40L, we investigated whether infliximab affects the CD40/CD40L pathway in the intestine. Eighteen CD patients were evaluated before and after infliximab therapy. Plasma sCD40L was measured by ELISA and platelet and peripheral blood T cell (PBT) CD40L expression by flow cytometry. Microvascular CD40 and VCAM-1 expression were assessed in mucosal biopsies by immunohistochemistry and by flow cytometry in human intestinal microvascular endothelial cells (HIMEC). Cell cultures were performed in the presence and absence of infliximab. Infliximab treatment significantly reduced plasma sCD40L levels and eliminated CD40 and VCAM-1 from mucosal microvessels. In vitro infliximab prevented TNF-alpha-induced CD40 and VCAM-1 expression by HIMEC, and reduced PBT, but not platelet, surface CD40L expression and sCD40L release. In addition, infliximab decreased T cell-induced VCAM-1 expression in HIMEC by down-regulating CD40L in T cells and promoting T cells apoptosis. These findings point to a novel mechanism of action of infliximab, i.e., the disruption of CD40/CD40L-dependent cognate interactions between intestinal microvessels and T cells. Thus, in addition to neutralizing TNF-alpha and inducing T cell death, the therapeutic effects of infliximab in CD appear to be also mediated by inhibition of vascular inflammation in the gut.  相似文献   

4.
Enhanced vascular arginase activity impairs endothelium-dependent vasorelaxation by decreasing l-arginine availability to endothelial nitric oxide (NO) synthase, thereby reducing NO production. Elevated angiotensin II (ANG II) is a key component of endothelial dysfunction in many cardiovascular diseases and has been linked to elevated arginase activity. We determined signaling mechanisms by which ANG II increases endothelial arginase function. Results show that ANG II (0.1 μM, 24 h) elevates arginase activity and arginase I expression in bovine aortic endothelial cells (BAECs) and decreases NO production. These effects are prevented by the arginase inhibitor BEC (100 μM). Blockade of ANG II AT(1) receptors or transfection with small interfering RNA (siRNA) for Gα12 and Gα13 also prevents ANG II-induced elevation of arginase activity, but siRNA for Gαq does not. ANG II also elevates active RhoA levels and induces phosphorylation of p38 MAPK. Inhibitors of RhoA activation (simvastatin, 0.1 μM) or Rho kinase (ROCK) (Y-27632, 10 μM; H1152, 0.5 μM) block both ANG II-induced elevation of arginase activity and phosphorylation of p38 MAPK. Furthermore, pretreatment of BAECs with p38 inhibitor SB-202190 (2 μM) or transfection with p38 MAPK siRNA prevents ANG II-induced increased arginase activity/expression and maintains NO production. Additionally, inhibitors of p38 MAPK (SB-203580, 5 μg·kg(-1)·day(-1)) or arginase (ABH, 8 mg·kg(-1)·day(-1)) or arginase gene knockout in mice prevents ANG II-induced vascular endothelial dysfunction and associated enhancement of arginase. These results indicate that ANG II increases endothelial arginase activity/expression through Gα12/13 G proteins coupled to AT(1) receptors and subsequent activation of RhoA/ROCK/p38 MAPK pathways leading to endothelial dysfunction.  相似文献   

5.
Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene transfer in human umbilical vein endothelial cells (HUVECs), we show here that both active RhoA and ROCK not only downregulate eNOS gene expression as reported previously but also inhibit eNOS phosphorylation at Ser-1177 and cellular NO production with concomitant suppression of PKB activation. Moreover, coexpression of a constitutive active form of PKB restores the phosphorylation but not gene expression of eNOS in the presence of active RhoA. Furthermore, we show that thrombin inhibits eNOS phosphorylation, as well as expression via Rho/ROCK pathway. Expression of the active PKB reverses eNOS phosphorylation but has no effect on downregulation of eNOS expression induced by thrombin. Taken together, these data demonstrate that Rho/ROCK pathway negatively regulates eNOS phosphorylation through inhibition of PKB, whereas it downregulates eNOS expression independent of PKB.  相似文献   

6.
PKC is required for activation of ROCK by RhoA in human endothelial cells   总被引:3,自引:0,他引:3  
Rho/Rho-kinase (ROCK) complex formation is the only proposed mechanism for ROCK activation. Rho/ROCK and PKC can exhibit a convergence of cellular effects such as suppression of endothelial nitric oxide synthase (eNOS) expression. We, therefore, investigated the role of PKC in RhoA/ROCK complex formation and activation linked to eNOS expression in cultured human umbilical vein endothelial cells. We showed that expression of constitutively active RhoA (Rho63) or ROCK (CAT) suppressed eNOS gene expression. This effect of Rho63 but not that of CAT was abolished by phorbol ester-sensitive PKC depletion. Accordingly, depletion or inhibition of PKC prevented ROCK activation by Rho63 without affecting RhoA/ROCK complex formation. Similarly, suppression of eNOS expression and activation of ROCK, but not RhoA by thrombin were prevented by PKC inhibition or depletion. These results indicate that RhoA/ROCK complex formation alone is not sufficient and PKC is required for RhoA-induced ROCK activation leading to eNOS gene suppression.  相似文献   

7.
BACKGROUND: NKX2-3 is associated with inflammatory bowel disease (IBD). NKX2-3 is expressed in microvascular endothelial cells and the muscularis mucosa of the gastrointestinal tract. Human intestinal microvascular endothelial cells (HIMECs) are actively involved in the pathogenesis of IBD and IBD-associated microvascular dysfunction. To understand the cellular function of NKX2-3 and its potential role underlying IBD pathogenesis, we investigated the genes regulated by NKX2-3 in HIMEC using cDNA microarray. METHODOLOGY/PRINCIPAL FINDINGS: NKX2-3 expression was suppressed by shRNA in two HIMEC lines and gene expression was profiled by cDNA microarray. Pathway Analysis was used to identify gene networks according to biological functions and associated pathways. Validation of microarray and genes expression in intestinal tissues was assessed by RT-PCR. NKX2-3 regulated genes are involved in immune and inflammatory response, cell proliferation and growth, metabolic process, and angiogenesis. Several inflammation and angiogenesis related signaling pathways that play important roles in IBD were regulated by NKX2-3, including endothelin-1 and VEGF-PI3K/AKT-eNOS. Expression levels of NKX2-3, VEGFA, PI3K, AKT, and eNOS are increased in intestinal tissues from IBD patients and expression levels of EDN1 are decreased in intestinal tissues from IBD patients. These results demonstrated the important roles of NKX2-3, VEGF, PI3K, AKT, eNOS, and EDN1 in IBD pathogenesis. Correlation analysis showed a positive correlation between mRNA expression of NKX2-3 and VEGFA and a negative correlation between mRNA expression of NKX2-3 and EDN1 in intestinal tissues from IBD patients. CONCLUSION/RELEVANCE: NKX2-3 may play an important role in IBD pathogenesis by regulating endothelin-1 and VEGF signaling in HIMECs.  相似文献   

8.
Tumor necrosis factor alpha (TNF-alpha) exerts multiple actions on endothelial cells including among others the expression of pro-coagulant activity and adhesion molecules, and secretion of cytokines. We now show that TNF-alpha induces a time- and dose-dependent cytotoxic effect on cultured bovine aortic endothelial cells. This TNF-induced cytotoxicity, which is preceded by increased production of nitric oxide (NO), is significantly decreased by the NO synthase inhibitor N-iminoethyl-L-ornithine (L-NIO). Dexamethasone, which prevents the expression of cytokine-induced NO synthase in endothelial cells, also inhibits TNF-alpha-dependent cytotoxicity. The results indicate that NO is involved in the cytotoxic effect of TNF-alpha on endothelial cells.  相似文献   

9.
Lipopolysaccharide (endotoxin) tolerance is well described in monocytes and macrophages, but is less well characterized in endothelial cells. Because intestinal microvascular endothelial cells exhibit a strong immune response to LPS challenge and play a critical regulatory role in gut inflammation, we sought to characterize the activation response of these cells to repeated LPS exposure. Primary cultures of human intestinal microvascular endothelial cells (HIMEC) were stimulated with LPS over 6-60 h and activation was assessed using U937 leukocyte adhesion, expression of E-selectin, ICAM-1, VCAM-1, IL-6, IL-8, manganese superoxide dismutase, HLA-DR, and CD86. Effect of repeat LPS stimulation on HIMEC NF-kappaB and mitogen-activated protein kinase (MAPK) activation, generation of superoxide anion, and Toll-like receptor 4 expression was characterized. LPS pretreatment of HIMEC for 24-48 h significantly decreased leukocyte adhesion after subsequent LPS stimulation. LPS pretreatment inhibited expression of E-selectin, VCAM-1, IL-6, and CD86, while ICAM-1, IL-8, and HLA-DR were not altered. Manganese superoxide dismutase expression increased with repeated LPS stimulation, with a reduction in intracellular superoxide. NF-kappaB activation was transiently inhibited by LPS pretreatment for 6 h, but not at later time points. In contrast, p44/42 MAPK, p38 MAPK, and c-Jun N-terminal kinase activation demonstrated inhibition by LPS pretreatment 24 or 48 h prior. Toll-like receptor 4 expression on HIMEC was not altered by LPS. HIMEC exhibit endotoxin tolerance after repeat LPS exposure in vitro, characterized by diminished activation and intracellular superoxide anion concentration, and reduced leukocyte adhesion. HIMEC possess specific mechanisms of immunoregulatory hyporesponsiveness to repeated LPS exposure.  相似文献   

10.
We have recently shown that inhibition of nitric oxide (NO) synthesis by asymmetrical dimethylarginine (ADMA) accelerated endothelial cell (EC) senescence which was prevented by coincubation with l-arginine; however the effect of long-term treatment of l-arginine alone on senescence of ECs have not been investigated. Human ECs were cultured in medium containing different concentrations of l-arginine until senescence. l-Arginine paradoxically accelerated senescence indicated by inhibiting telomerase activity. Moreover, l-arginine decreased NO metabolites, increased peroxynitrite, and 8-iso-prostaglandin F formation. In old cells, the mRNA expression of human amino acid transporter (hCAT)2B, the activity and protein expression of arginase II were upregulated indicated by enhanced urea, l-ornithine, and l-arginine consumption. Inhibition of arginase activity, or transfection with arginase II siRNA prevented l-arginine-accelerated senescence. The most possible explanation for the paradoxical acceleration of senescence by l-arginine so far may be the translational and posttranslational activation of arginase II.  相似文献   

11.
12.
The calcineurin inhibitor cyclosporine A (CsA) modulates leukocyte cytokine production but may also effect nonimmune cells, including microvascular endothelial cells, which regulate the inflammatory process through leukocyte recruitment. We hypothesized that CsA would promote a proinflammatory phenotype in human intestinal microvascular endothelial cells (HIMEC), by inhibiting inducible nitric-oxide synthase (iNOS, NOS2)-derived NO, normally an important mechanism in limiting endothelial activation and leukocyte adhesion. Primary cultures of HIMEC were used to assess CsA effects on endothelial activation, leukocyte interaction, and the expression of iNOS as well as cell adhesion molecules. CsA significantly increased leukocyte binding to activated HIMEC, but paradoxically decreased endothelial expression of cell adhesion molecules (E-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule-1). In contrast, CsA completely inhibited the expression of iNOS in tumor necrosis factor-alpha/lipopolysaccharide-activated HIMEC. CsA blocked p38 MAPK phosphorylation in activated HIMEC, a key pathway in iNOS expression, but failed to inhibit NFkappaB activation. These studies demonstrate that CsA exerts a proinflammatory effect on HIMEC by blocking iNOS expression. CsA exerts a proinflammatory effect on the microvascular endothelium, and this drug-induced endothelial dysfunction may help explain its lack of efficacy in the long-term treatment of chronically active inflammatory bowel disease.  相似文献   

13.
14.
Insulin stimulates endothelial NO synthesis, at least in part mediated by phosphorylation and activation of endothelial NO synthase at Ser1177 and Ser615 by Akt. We have previously demonstrated that insulin-stimulated NO synthesis is inhibited under high culture glucose conditions, without altering Ca2+-stimulated NO synthesis or insulin-stimulated phosphorylation of eNOS. This indicates that stimulation of endothelial NO synthase phosphorylation may be required, yet not sufficient, for insulin-stimulated nitric oxide synthesis. In the current study we investigated the role of supply of the eNOS substrate, l-arginine as a candidate parallel mechanism underlying insulin-stimulated NO synthesis in cultured human aortic endothelial cells. Insulin rapidly stimulated l-arginine transport, an effect abrogated by incubation with inhibitors of phosphatidylinositol-3′-kinase or infection with adenoviruses expressing a dominant negative mutant Akt. Furthermore, supplementation of endothelial cells with extracellular l-arginine enhanced insulin-stimulated NO synthesis, an effect reversed by co-incubation with the l-arginine transport inhibitor, l-lysine. Basal l-arginine transport was significantly increased under high glucose culture conditions, yet insulin-stimulated l-arginine transport remained unaltered. The increase in l-arginine transport elicited by high glucose was independent of the expression of the cationic amino acid transporters, hCAT1 and hCAT2 and not associated with any changes in the activity of ERK1/2, Akt or protein kinase C (PKC). We propose that rapid stimulation of L-arginine transport contributes to insulin-stimulated NO synthesis in human endothelial cells, yet attenuation of this is unlikely to underlie the inhibition of insulin-stimulated NO synthesis under high glucose conditions.  相似文献   

15.
16.
17.
The etiologies of the inflammatory bowel diseases (IBD; Crohn's disease, ulcerative colitis) have not been fully elucidated. However, there is very good evidence implicating T cell and T cell trafficking to the gut and its associated lymphoid tissue as important components in disease pathogenesis. The objective of this review is to provide an overview of the mechanisms involved in naive and effector T cell trafficking to the gut-associated lymphoid tissue (GALT; Peyer's patches, isolated lymphoid follicles), mesenteric lymph nodes and intestine in response to commensal enteric antigens under physiological conditions as well as during the induction of chronic gut inflammation. In addition, recent data suggests that the GALT may not be required for enteric antigen-driven intestinal inflammation in certain mouse models of IBD. These new data suggest a possible paradigm shift in our understanding of how and where naive T cells become activated to yield disease-producing effector cells.  相似文献   

18.

Background

The role of advanced glycation end products (AGEs) in the development of diabetes, especially diabetic complications, has been emphasized in many reports. Accumulation of AGEs in the vasculature triggers a series of morphological and functional changes in endothelial cells (ECs) and induces an increase of endothelial permeability. This study was to investigate the involvement of RhoA/ROCK-dependent moesin phosphorylation in endothelial abnormalities induced by AGEs.

Methods

Using human dermal microvascular endothelial cells (HMVECs), the effects of human serum albumin modified-AGEs (AGE-HSA) on the endothelium were assessed by measuring monolayer permeability and staining of F-actin in HMVECs. Activations of RhoA and ROCK were determined by a luminescence-based assay and immunoblotting. Transfection of recombinant adenovirus that was dominant negative for RhoA (RhoA N19) was done to down-regulate RhoA expression, while adenovirus with constitutively activated RhoA (RhoA L63) was transfected to cause overexpression of RhoA in HMVECs. H-1152 was employed to specifically block activation of ROCK. Co-immunoprecipitation was used to further confirm the interaction of ROCK and its downstream target moesin. To identify AGE/ROCK-induced phosphorylation site in moesin, two mutants pcDNA3/HA-moesinT558A and pcDNA3/HA-moesinT558D were applied in endothelial cells.

Results

The results showed that AGE-HSA increased the permeability of HMVEC monolayer and triggered the formation of F-actin-positive stress fibers. AGE-HSA enhanced RhoA activity as well as phosphorylation of ROCK in a time- and dose-dependent manner. Down-regulation of RhoA expression with RhoA N19 transfection abolished these AGE-induced changes, while transfection of RhoA L63 reproduced the AGE-evoked changes. H-1152 attenuated the AGE-induced alteration in monolayer permeability and cytoskeleton. The results also confirmed the AGE-induced direct interaction of ROCK and moesin. Thr558 was further identified as the phosphorylating site of moesin in AGE-evoked endothelial responses.

Conclusion

These results confirm the involvement of RhoA/ROCK pathway and subsequent moesin Thr558 phosphorylation in AGE-mediated endothelial dysfunction.  相似文献   

19.
Inflammatory bowel diseases (IBD)--Crohn's disease and ulcerative colitis--are relapsing chronic inflammatory disorders which involve genetic, immunological, and environmental factors. The regulation of TNF-alpha, a key mediator in the inflammatory process in IBD, is interconnected with mitogen-activated protein kinase pathways. The aim of this study was to characterize the activity and expression of the four p38 subtypes (p38alpha-delta), c-Jun N-terminal kinases (JNKs), and the extracellular signal-regulated kinases (ERK)1/2 in the inflamed intestinal mucosa. Western blot analysis revealed that p38alpha, JNKs, and ERK1/2 were significantly activated in IBD, with p38alpha showing the most pronounced increase in kinase activity. Protein expression of p38 and JNK was only moderately altered in IBD patients compared with normal controls, whereas ERK1/2 protein was significantly down-regulated. Immunohistochemical analysis of inflamed mucosal biopsies localized the main expression of p38alpha to lamina propria macrophages and neutrophils. ELISA screening of the supernatants of Crohn's disease mucosal biopsy cultures showed that incubation with the p38 inhibitor SB 203580 significantly reduced secretion of TNF-alpha. In vivo inhibition of TNF-alpha by a single infusion of anti-TNF-alpha Ab (infliximab) resulted in a highly significant transient increase of p38alpha activity during the first 48 h after infusion. A significant infliximab-dependent p38alpha activation was also observed in THP-1 myelomonocytic cells. In human monocytes, infliximab enhanced TNF-alpha gene expression, which could be inhibited by SB 203580. In conclusion, p38alpha signaling is involved in the pathophysiology of IBD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号