首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
We tested the hypothesis that muscle sympathetic nerve activity (MSNA) would not differ in subcutaneously obese (SUBOB) and nonobese (NO) men with similar levels of abdominal visceral fat despite higher plasma leptin concentrations in the former. We further hypothesized that abdominal visceral fat would be the strongest body composition- or regional fat distribution-related correlate of MSNA among these individuals. To accomplish this, we measured MSNA (via microneurography), body composition (via dual-energy X-ray absorptiometry), and abdominal fat distribution (via computed tomography) in 15 NO (body mass index 0.05, respectively) despite approximately 2.6-fold higher (P < 0.05) plasma leptin concentration in the SUBOB men. Furthermore, abdominal visceral fat was the only body composition- or regional fat distribution-related correlate (r = 0.45; P < 0.05) of MSNA in the pooled sample. In addition, abdominal visceral fat was related to MSNA in NO (r = 0.58; P = 0.0239) but not SUBOB (r = 0.39; P = 0.3027) men. Taken together with our previous observations, our findings suggest that the relation between obesity and MSNA is phenotype dependent. The relation between abdominal visceral fat and MSNA was evident in NO but not in SUBOB men and at levels of abdominal visceral fat below the level typically associated with elevated cardiovascular and metabolic disease risk. Our observations do not support an obvious role for leptin in contributing to sympathetic neural activation in human obesity and, in turn, are inconsistent with the concept of selective leptin resistance.  相似文献   

2.
Sympathetic neural responses to mental stress are well documented but controversial, whereas sympathetic neural responses to emotional stress are unknown. The purpose of this study was to investigate neural and cardiovascular responses to emotional stress evoked by negative pictures and reexamine the relationship between muscle sympathetic nerve activity (MSNA) and perceived stress. Mean arterial pressure (MAP), heart rate (HR), MSNA, and perceived stress levels were recorded in 18 men during three randomized trials: 1) neutral pictures, 2) negative pictures, and 3) mental stress. MAP and HR increased during mental stress (Delta14 +/- 2 mmHg and Delta15 +/- 2 beats/min, P < 0.001) but did not change during viewing of negative or neutral pictures. MSNA did not change during viewing of neutral (Delta1 +/- 1 burst/min, n = 16) or negative (Delta0 +/- 1 burst/min, n = 16) pictures or during mental stress (Delta1 +/- 2 burst/min, n = 13). Perceived stress levels were higher during mental stress (3 +/- 0 arbitrary units) than during viewing negative pictures (2 +/- 0 arbitrary units, P < 0.001). Perceived stress levels were not correlated to changes in MSNA during negative pictures (r = 0.10, P = 0.84) or mental stress (r = 0.36, P = 0.23). In conclusion, our results demonstrate robust increases in MAP and HR during mental stress, but not during emotional stress evoked by negative pictures. Although the influence of mental stress on MSNA remains unresolved, our findings challenge the concept that perceived stress levels modulate MSNA during mental stress.  相似文献   

3.
We tested the hypothesis that muscle sympathetic nerve activity (MSNA) would be higher in endurance-trained (ET) compared with sedentary (Sed) men with similar levels of total body and abdominal adiposity. We further hypothesized that sympathetic baroreflex gain would be augmented in ET compared with Sed men independent of the level of adiposity. To address this, we measured MSNA (via microneurography), sympathetic and vagal baroreflex responses (the modified Oxford technique), body composition (dual-energy X-ray absorptiometry), and waist circumference (Gulick tape) in Sed (n = 22) and ET men (n = 8). The ET men were also compared with a subgroup of Sed men (n = 6) with similar levels of total body and abdominal adiposity. Basal MSNA was greater in the ET compared with Sed men with similar levels of total body and abdominal adiposity (28 +/- 2.0 vs. 21 +/- 2.0 bursts/min; P < 0.05) but similar to the larger group of Sed men (n = 22) with higher total body and abdominal adiposity (vs. 26 +/- 3 bursts/min; P > 0.05). In contrast to our hypothesis, sympathetic baroreflex gain was lower in the ET compared with Sed men (-6.4 +/- 0.8 vs. -8.4 +/- 0.4 arbitrary integrative units x beat(-1) x mmHg(-1); P < 0.05) regardless of the level of adiposity. Taken together, the results of the present study suggest that MSNA is higher in ET compared with Sed men with similar levels of total body and abdominal adiposity. In addition, sympathetic baroreflex gain is lower in ET compared with Sed men. That sympathetic baroreflex gain was lower in ET compared with Sed men regardless of the level of adiposity suggests an influence of the ET state per se.  相似文献   

4.
Arterial wall hypertrophy occurs with age in humans and is a strong predictor of cardiovascular disease risk. The responsible mechanism is unknown, but data from studies in experimental animals suggest that elevated sympathetic-adrenergic tone may be involved. To test this hypothesis in humans we studied 11 young (29 +/- 1 yr; means +/- SE) and 13 older (63 +/- 1) healthy normotensive men under supine resting conditions. Muscle sympathetic nerve activity (MSNA) burst frequency (peroneal microneurography) was 70% higher in the older men (39 +/- 1 vs. 23 +/- 2 bursts/min; P < 0.001). Femoral artery intima media thickness (IMT; B-mode ultrasound) and the femoral IMT-to-lumen diameter ratio (IMT/lumen) were approximately 75% greater in the older men (both P < 0.001). Femoral IMT (r = 0. 82) and the femoral IMT/lumen (r = 0.85) were strongly and positively related to MSNA (both P < 0.001). The significant age group differences in femoral IMT and the IMT/lumen were abolished when the influence of MSNA was removed. In contrast, the relationship between MSNA and femoral wall thickness remained significant after removing the influence of age. We conclude that 1) primary aging is associated with femoral artery hypertrophy in humans and 2) this is strongly related to elevations in sympathetic nerve activity to the vasculature. These results support the hypothesis that tonic elevations in sympathetic nerve activity may be an important mechanism in the arterial remodeling that occurs with human aging.  相似文献   

5.
Chemoreflex control of sympathetic nerve activity is exaggerated in heart failure (HF) patients. However, the vascular implications of the augmented sympathetic activity during chemoreceptor activation in patients with HF are unknown. We tested the hypothesis that the muscle blood flow responses during peripheral and central chemoreflex stimulation would be blunted in patients with HF. Sixteen patients with HF (49 +/- 3 years old, Functional Class II-III, New York Heart Association) and 11 age-paired normal controls were studied. The peripheral chemoreflex control was evaluated by inhalation of 10% O(2) and 90% N(2) for 3 min. The central chemoreflex control was evaluated by inhalation of 7% CO(2) and 93% O(2) for 3 min. Muscle sympathetic nerve activity (MSNA) was directly evaluated by microneurography. Forearm blood flow was evaluated by venous occlusion plethysmography. Baseline MSNA were significantly greater in HF patients (33 +/- 3 vs. 20 +/- 2 bursts/min, P = 0.001). Forearm vascular conductance (FVC) was not different between the groups. During hypoxia, the increase in MSNA was significantly greater in HF patients than in normal controls (9.0 +/- 1.6 vs. 0.8 +/- 2.0 bursts/min, P = 0.001). The increase in FVC was significantly lower in HF patients (0.00 +/- 0.10 vs. 0.76 +/- 0.25 units, P = 0.001). During hypercapnia, MSNA responses were significantly greater in HF patients than in normal controls (13.9 +/- 3.2 vs. 2.1 +/- 1.9 bursts/min, P = 0.001). FVC responses were significantly lower in HF patients (-0.29 +/- 0.10 vs. 0.37 +/- 0.18 units, P = 0.001). In conclusion, muscle vasodilatation during peripheral and central chemoreceptor stimulation is blunted in HF patients. This vascular response seems to be explained, at least in part, by the exaggerated MSNA responses during hypoxia and hypercapnia.  相似文献   

6.
The upper limit of incidence of muscle sympathetic neural bursts can lead to underestimation of sympathetic activity in patients with severe heart failure. This study aimed to evaluate the pulse-synchronous burst power of muscle sympathetic nerve activity (MSNA) as a more specific indicator that could discriminate sympathetic activity in patients with heart failure. In 54 patients with heart failure, the pulse-synchronous burst power at the mean heart rate was quantified by spectral analysis of MSNA. Thirteen patients received a central sympatholytic agent (guanfacine) for 5 days to validate the feasibility of this new index. Both burst incidence and plasma norepinephrine level showed no significant difference between patients in New York Heart Association functional class III (94 +/- 6 per 100 heartbeats and 477 +/- 219 pg/ml, respectively) and class II (79 +/- 14 per 100 heartbeats and 424 +/- 268 pg/ml, respectively). In contrast, the burst power was useful for discriminating patients in class III from those in class II (61 +/- 8% vs. 39 +/- 10%; P < 0.05). Inhibition of sympathetic nerve activity by guanfacine was more sensitively reflected by the change of burst power (-36 +/- 25%) than by that of burst incidence (-12 +/- 14%; P < 0.001). The sympathetic burst power reflects both burst frequency and amplitude independently of the absolute values and provides a sensitive new index for interindividual comparisons of sympathetic activity in patients with heart failure.  相似文献   

7.
Exercise improves glucose metabolism and delays the onset and/or reverses insulin resistance in the elderly by an unknown mechanism. In the present study, we examined the effects of exercise training on glucose metabolism, abdominal adiposity, and adipocytokines in obese elderly. Sixteen obese men and women (age = 63 +/- 1 yr, body mass index = 33.2 +/- 1.4 kg/m2) participated in a 12-wk supervised exercise program (5 days/wk, 60 min/day, treadmill/cycle ergometry at 85% of heart rate maximum). Visceral fat (VF), subcutaneous fat, and total abdominal fat were measured by computed tomography. Fat mass and fat-free mass were assessed by hydrostatic weighing. An oral glucose tolerance test was used to determine changes in insulin resistance. Exercise training increased maximal oxygen consumption (21.3 +/- 0.8 vs. 24.3 +/- 1.0 ml.kg(-1).min(-1), P < 0.0001), decreased body weight (P < 0.0001) and fat mass (P < 0.001), while fat-free mass was not altered (P > 0.05). VF (176 +/- 20 vs. 136 +/- 17 cm2, P < 0.0001), subcutaneous fat (351 +/- 34 vs. 305 +/- 28 cm2, P < 0.03), and total abdominal fat (525 +/- 40 vs. 443 +/- 34 cm2, P < 0.003) were reduced through training. Circulating leptin was lower (P < 0.003) after training, but total adiponectin and tumor necrosis factor-alpha remained unchanged. Insulin resistance was reversed by exercise (40.1 +/- 7.7 vs. 27.6 +/- 5.6 units, P < 0.01) and correlated with changes in VF (r = 0.66, P < 0.01) and maximal oxygen consumption (r = -0.48, P < 0.05) but not adipocytokines. VF loss after aerobic exercise training improves glucose metabolism and is associated with the reversal of insulin resistance in older obese men and women.  相似文献   

8.
Exposure to lower body negative pressure (LBNP) leads to an increased activation of the sympathetic nervous system (SNS) and an increase in muscle sympathetic nerve activity (MSNA). In this study, we examined the relationship between MSNA and interstitial norepinephrine (NE(i)) concentrations during LBNP. Twelve healthy volunteers were studied (26 +/- 6 yr). Simultaneous MSNA and microdialysis data were collected in six of these subjects. Measurements of MSNA (microneurography) and NE(i) (microdialysis, vastus lateralis) were performed at rest and then during an incremental LBNP paradigm (-10, -30, and -50 mmHg). MSNA rose as a function of LBNP (P < 0.001, n = 12). The plasma norepinephrine (NE(p)) concentration was 0.9 +/- 0.1 nmol/l at rest (n = 12). NE(i) measured in six subjects rose from 5.2 +/- 0.8 nmol/l at rest to 17.0 +/- 1.7 nmol/l at -50 mmHg (P < 0.001). Of note, the rise in NE(p) with LBNP was considerably less compared with the changes in NE(i) (Delta21 +/- 6% vs. Delta197 +/- 52%, n = 6, P < 0.015). MSNA and NE(i) showed a significant linear relationship (r = 0.721, P < 0.004). Activation of the SNS increased MSNA and NE(i) levels. The magnitude of the NE(i) increase was far greater than that seen for NE(p) suggesting that NE movement into the circulation decreases with baroreceptor unloading.  相似文献   

9.
The aim of this study was to determine whether estrogen therapy enhances postexercise muscle sympathetic nerve activity (MSNA) decrease and vasodilation, resulting in a greater postexercise hypotension. Eighteen postmenopausal women received oral estrogen therapy (ET; n=9, 1 mg/day) or placebo (n=9) for 6 mo. They then participated in one 45-min exercise session (cycle ergometer at 50% of oxygen uptake peak) and one 45-min control session (seated rest) in random order. Blood pressure (BP, oscillometry), heart rate (HR), MSNA (microneurography), forearm blood flow (FBF, plethysmography), and forearm vascular resistance (FVR) were measured 60 min later. FVR was calculated. Data were analyzed using a two-way ANOVA. Although postexercise physiological responses were unaltered, HR was significantly lower in the ET group than in the placebo group (59+/-2 vs. 71+/-2 beats/min, P<0.01). In both groups, exercise produced significant decreases in systolic BP (145+/-3 vs. 154+/-3 mmHg, P=0.01), diastolic BP (71+/-3 vs. 75+/-2 mmHg, P=0.04), mean BP (89+/-2 vs. 93+/-2 mmHg, P=0.02), MSNA (29+/-2 vs. 35+/-1 bursts/min, P<0.01), and FVR (33+/-4 vs. 55+/-10 units, P=0.01), whereas it increased FBF (2.7+/-0.4 vs. 1.6+/-0.2 ml x min(-1) x 100 ml(-1), P=0.02) and did not change HR (64+/-2 vs. 65+/-2 beats/min, P=0.3). Although ET did not change postexercise BP, HR, MSNA, FBF, or FVR responses, it reduced absolute HR values at baseline and after exercise.  相似文献   

10.
Experimental endotoxemia as a model of the initial septic response affects the autonomic nervous system with profound cardiovascular sequelae. Whether the postsynaptic sympathoneural activity to the muscle vascular bed is altered in the early septic phase remains to be determined. The present study aimed to elucidate the early effects of LPS on muscle sympathetic nerve activity (MSNA) and cardiovascular regulation in healthy humans. Young, healthy volunteers randomly received either an LPS bolus (4 ng/kg body wt, n = 11) or placebo (saline; n = 7). Experimental baroreflex assessment (baseline measurements followed by infusion of vasoactive drugs nitroprusside/phenylephrine) was done prior to and 90 min following LPS or placebo challenge. MSNA, heart rate, blood pressure, and blood levels of catecholamines, TNF-alpha and IL-6 were measured sequentially. Endotoxin but not placebo-induced flu-like symptoms and elevated cytokine levels. In contrast to placebo, LPS significantly suppressed MSNA burst frequency 90 min after injection [mean +/- SE: 12.1 +/- 2.9 vs. 27.5 +/- 3.3 burst/min (post- vs. pre-LPS); P < 0.005] but increased heart rate [78.4 +/- 3.1 vs. 60.6 +/- 2.0 beats/min (post- vs. pre-LPS); P < 0.001]. Baseline blood pressure was not altered, but baroreflex testing demonstrated a blunted MSNA response and uncoupling of heart rate modulation to blood pressure changes in the endotoxin group. We conclude that endotoxin challenge in healthy humans has rapid suppressive effects on postsynaptic sympathetic nerve activity to the muscle vascular bed and alters baroreflex function which may contribute to the untoward cardiovascular effects of sepsis.  相似文献   

11.
We tested the hypothesis that reductions in total body and abdominal visceral fat with energy restriction would be associated with increases in cardiovagal baroreflex sensitivity (BRS) in overweight/obese older men. To address this, overweight/obese (25 < or = body mass index < or = 35 kg/m(2)) young (OB-Y, n = 10, age = 32.9 +/- 2.3 yr) and older (OB-O, n = 6, age = 60 +/- 2.7 yr) men underwent 3 mo of energy restriction at a level designed to reduce body weight by 5-10%. Cardiovagal BRS (modified Oxford technique), body composition (dual-energy X-ray absorptiometry), and abdominal fat distribution (computed tomography) were measured in the overweight/obese men before weight loss and after 4 wk of weight stability at their reduced weight and compared with a group of nonobese young men (NO-Y, n = 13, age = 21.1 +/- 1.0 yr). Before weight loss, cardiovagal BRS was approximately 35% and approximately 60% lower (P < 0.05) in the OB-Y and OB-O compared with NO-Y. Body weight (-7.8 +/- 1.1 vs. -7.3 +/- 0.7 kg), total fat mass (-4.1 +/- 1.0 vs. -4.4 +/- 0.8 kg), and abdominal visceral fat (-27.6 +/- 6.9 vs. -43.5 +/- 10.1 cm(2)) were reduced (all P < 0.05) after weight loss, but the magnitude of reduction did not differ (all P > 0.05) between OB-Y and OB-O, respectively. Cardiovagal BRS increased (11.5 +/- 1.9 vs. 18.5 +/- 2.6 ms/mmHg and 6.7 +/- 1.2 vs. 12.8 +/- 4.2 ms/mmHg) after weight loss (both P < 0.05) in OB-Y and OB-O, respectively. After weight loss, cardiovagal BRS in the obese/overweight young and older men was approximately 105% and approximately 73% (P > 0.05) of NO-Y (17.5 +/- 2.2 ms/mmHg). Therefore, the results of this study indicate that weight loss increases the sensitivity of the cardiovagal baroreflex in overweight/obese young and older men.  相似文献   

12.
Visceral fat has been associated with multiple cardiovascular disease (CVD) risk factors. The aim of this study was to identify anthropometrical measures most closely associated with some well-known CVD risk factors. Because most Asians at risk have normal body mass index (BMI) according to Western standards, we studied healthy nonobese Korean males (n = 102; age: 36.5 +/- 0.8 years, BMI: 23.8 +/- 0.2 kg/m2). Visceral fat area (VFA) at the fourth lumbar vertebra was associated with increased postprandial triglyceride (TG) response (r = 0.53, P < 0.001) and with plasma malondialdehyde (MDA) (r = 0.36, P < 0.01) and PGF2alpha (r = 0.24, P < 0.05). When matched for BMI and age, men with high VFA (HVFA) (>/=100 cm2; n = 27) had higher blood pressure (P < 0.01), increased consumption of cigarettes (P < 0.01), and lower ratio of energy expenditure to calorie intake (P < 0.01) as compared with low VFA men (<100 cm2; n = 27). Men with HVFA showed higher TG, glucose, and insulin responses following fat and oral glucose tolerance tests respectively higher plasma concentrations of MDA (P < 0.001), urinary PGF2alpha (P < 0.05), and lymphocytes deoxyribonucleic acid tail moments (P < 0.01). Conversely, HVFA was associated with lower testosterone, insulin-like growth factor-1, and brachial artery flow-mediated dilation (P < 0.001). In conclusion, our data indicate that visceral fat accumulation, even in nonobese men, is a major factor contributing to increased CVD risk.  相似文献   

13.
Space-flight and its ground-based simulation model, 6 degrees head-down bed rest (HDBR), cause cardiovascular deconditioning in humans. Because sympathetic vasoconstriction plays a very important role in circulation, we examined whether HDBR impairs alpha-adrenergic vascular responsiveness to sympathetic nerve activity. We subjected eight healthy volunteers to 14 days of HDBR and before and after HDBR measured calf muscle sympathetic nerve activity (MSNA; microneurography) and calf blood flow (venous occlusion plethysmography) during sympathoexcitatory stimulation (rhythmic handgrip exercise). HDBR did not change the increase in total MSNA (P = 0.97) or the decrease in calf vascular conductance (P = 0.32) during exercise, but it did augment the increase in calf vascular resistance (P = 0.0011). HDBR augmented the transduction gain from total MSNA into calf vascular resistance, assessed as the least squares linear regression slope of vascular resistance on total MSNA (0.05 +/- 0.02 before HDBR, 0.20 +/- 0.06 U.min-1.burst-1 after HDBR, P = 0.0075), but did not change the transduction gain into calf vascular conductance (P = 0.41). Our data indicate that alpha-adrenergic vascular responsiveness to sympathetic nerve activity is preserved in the supine position after HDBR in humans.  相似文献   

14.
The effects of resistance training on arterial blood pressure and muscle sympathetic nerve activity (MSNA) at rest have not been established. Although endurance training is commonly recommended to lower arterial blood pressure, it is not known whether similar adaptations occur with resistance training. Therefore, we tested the hypothesis that whole body resistance training reduces arterial blood pressure at rest, with concomitant reductions in MSNA. Twelve young [21 +/- 0.3 (SE) yr] subjects underwent a program of whole body resistance training 3 days/wk for 8 wk. Resting arterial blood pressure (n = 12; automated sphygmomanometer) and MSNA (n = 8; peroneal nerve microneurography) were measured during a 5-min period of supine rest before and after exercise training. Thirteen additional young (21 +/- 0.8 yr) subjects served as controls. Resistance training significantly increased one-repetition maximum values in all trained muscle groups (P < 0.001), and it significantly decreased systolic (130 +/- 3 to 121 +/- 2 mmHg; P = 0.01), diastolic (69 +/- 3 to 61 +/- 2 mmHg; P = 0.04), and mean (89 +/- 2 to 81 +/- 2 mmHg; P = 0.01) arterial blood pressures at rest. Resistance training did not affect MSNA or heart rate. Arterial blood pressures and MSNA were unchanged, but heart rate increased after 8 wk of relative inactivity for subjects in the control group (61 +/- 2 to 67 +/- 3 beats/min; P = 0.01). These results indicate that whole body resistance exercise training might decrease the risk for development of cardiovascular disease by lowering arterial blood pressure but that reductions of pressure are not coupled to resistance exercise-induced decreases of sympathetic tone.  相似文献   

15.
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disturbance among women of reproductive age and is proposed to be linked with size at birth and increased prevalence of cardiovascular disease. A disturbance in the sympathetic nervous system may contribute to the etiology of PCOS. This study evaluates sympathetic outflow in PCOS and its relation to size at birth. Directly recorded sympathetic nerve activity to the muscle vascular bed (MSNA) was obtained in 20 women with PCOS and in 18 matched controls. Ovarian ultrasonographic evaluation, biometric, hormonal, and biochemical parameters were measured, and birth data were collected. Women with PCOS had increased MSNA (30 +/- 8 vs. 20 +/- 7 burst frequency, P < 0.0005) compared with controls. MSNA was positively related to testosterone (r = 0.63, P < 0.005) and cholesterol (r = 0.55, P = 0.01) levels in PCOS, which, in turn, were not related to each other. Testosterone level was a stronger predictor of MSNA than cholesterol. Birth size did not differ between the study groups. This is the first study to directly address sympathetic nerve activity in women with PCOS and shows that PCOS is associated with high MSNA. Testosterone and cholesterol levels are identified as independent predictors of MSNA in PCOS, although testosterone has a stronger impact. The increased MSNA in PCOS may contribute to the increased cardiovascular risk and etiology of the condition. In this study, PCOS was not related to size at birth.  相似文献   

16.
Recent studies indicate that nonhypotensive orthostatic stress in humans causes reflex vasoconstriction in the forearm but not in the calf. We used microelectrode recordings of muscle sympathetic nerve activity (MSNA) from the peroneal nerve in conscious humans to determine if unloading of cardiac baroreceptors during nonhypotensive lower body negative pressure (LBNP) increases sympathetic discharge to the leg muscles. LBNP from -5 to -15 mmHg had no effect on arterial pressure or heart rate but caused graded decreases in central venous pressure and corresponding large increases in peroneal MSNA. Total MSNA (burst frequency X mean burst amplitude) increased by 61 +/- 22% (P less than 0.05 vs. control) during LBNP at only -5 mmHg and rose progressively to a value that was 149 +/- 29% greater than control during LBNP at -15 mmHg (P less than 0.05). The major new conclusion is that nonhypotensive LBNP is a potent stimulus to muscle sympathetic outflow in the leg as well as the arm. During orthostatic stress in humans, the cardiac baroreflex appears to trigger a mass sympathetic discharge to the skeletal muscles in all of the extremities.  相似文献   

17.
Mental stress consistently induces a pressor response that is often accompanied by a paradoxical increase of muscle sympathetic nerve activity (MSNA). The purpose of the present study was to evaluate sympathetic baroreflex sensitivity (BRS) by examining the relations between spontaneous fluctuations of diastolic arterial pressure (DAP) and MSNA. We hypothesized that sympathetic BRS would be attenuated during mental stress. DAP and MSNA were recorded during 5 min of supine baseline, 5 min of mental stress, and 5 min of recovery in 32 young healthy adults. Burst incidence and area were determined for each cardiac cycle and placed into 3-mmHg DAP bins; the slopes between DAP and MSNA provided an index of sympathetic BRS. Correlations between DAP and MSNA were strong (> 0.5) during baseline in 31 of 32 subjects, but we evaluated the change in slope only for those subjects maintaining a strong correlation during mental stress (16 subjects). During baseline, the relation between DAP and MSNA was negative when expressed as either burst incidence [slope = -1.95 ± 0.18 bursts·(100 beats)?1)·mmHg?1; r = -0.86 ± 0.03] or total MSNA [slope = -438 ± 91 units·(beat)?1 mmHg?1; r = -0.76 ± 0.06]. During mental stress, the slope between burst incidence and DAP was significantly reduced [slope = -1.14 ± 0.12 bursts·(100 beats)?1·mmHg?1; r = -0.72 ± 0.03; P < 0.01], indicating attenuation of sympathetic BRS. A more detailed analysis revealed an attenuation of sympathetic BRS during the first 2 min of mental stress (P < 0.01) but no change during the final 3 min of mental stress (P = 0.25). The present study demonstrates that acute mental stress attenuates sympathetic BRS, which may partially contribute to sympathoexcitation during the mental stress-pressor response. However, this attenuation appears to be isolated to the onset of mental stress. Moreover, variable MSNA responses to mental stress do not appear to be directly related to sympathetic BRS.  相似文献   

18.
The purpose of the present study was to determine sympathetic vascular transduction in young normotensive black and white adults. We hypothesized that blacks would demonstrate augmented transduction of muscle sympathetic nerve activity (MSNA) into vascular resistance. To test this hypothesis, MSNA, forearm blood flow, heart rate, and arterial blood pressure were measured during lower body negative pressure (LBNP). At rest, no differences existed in arterial blood pressure, heart rate, forearm blood flow, and forearm vascular resistance (FVR). Likewise, LBNP elicited comparable responses of these variables for blacks and whites. Baseline MSNA did not differ between blacks and whites, but whites demonstrated greater increases during LBNP (28 +/- 7 vs. 55 +/- 18%, 81 +/- 21 vs. 137 +/- 42%, 174 +/- 81 vs. 556 +/- 98% for -5, -15, and -40 mmHg LBNP, respectively; P < 0.001). Consistent with smaller increases in MSNA but similar FVR responses during LBNP, blacks demonstrated greater sympathetic vascular transduction (%FVR/%MSNA) than whites (0.95 +/- 0.07 vs. 0.82 +/- 0.07 U; 0.82 +/- 0.11 vs. 0.64 +/- 0.09 U; 0.95 +/- 0.37 vs. 0.35 +/- 0.09 U; P < 0.01). In summary, young whites demonstrate greater increases in MSNA during baroreceptor unloading than age-matched normotensive blacks. However, more importantly, for a given increase in MSNA, blacks demonstrate greater forearm vasoconstriction than whites. This finding may contribute to augmented blood pressure reactivity in blacks.  相似文献   

19.
Interactions between mechanisms governing ventilation and blood pressure (BP) are not well understood. We studied in 11 resting normal subjects the effects of sustained isocapnic hyperventilation on arterial baroreceptor sensitivity, determined as the alpha index between oscillations in systolic BP (SBP) generated by respiration and oscillations present in R-R intervals (RR) and in peripheral sympathetic nerve traffic [muscle sympathetic nerve activity (MSNA)]. Tidal volume increased from 478 +/- 24 to 1,499 +/- 84 ml and raised SBP from 118 +/- 2 to 125 +/- 3 mmHg, whereas RR decreased from 947 +/- 18 to 855 +/- 11 ms (all P < 0.0001); MSNA did not change. Hyperventilation reduced arterial baroreflex sensitivity to oscillations in SBP at both cardiac (from 13 +/- 1 to 9 +/- 1 ms/mmHg, P < 0.001) and MSNA levels (by -37 +/- 5%, P < 0.0001). Thus increased BP during hyperventilation does not elicit any reduction in either heart rate or MSNA. Baroreflex modulation of RR and MSNA in response to hyperventilation-induced BP oscillations is attenuated. Blunted baroreflex gain during hyperventilation may be a mechanism that facilitates simultaneous increases in BP, heart rate, and sympathetic activity during dynamic exercise and chemoreceptor activation.  相似文献   

20.
We and others have shown that moderate passive whole body heating (i.e., increased internal temperature ~0.7°C) increases muscle (MSNA) and skin sympathetic nerve activity (SSNA). It is unknown, however, if MSNA and/or SSNA continue to increase with more severe passive whole body heating or whether these responses plateau following moderate heating. The aim of this investigation was to test the hypothesis that MSNA and SSNA continue to increase from a moderate to a more severe heat stress. Thirteen subjects, dressed in a water-perfused suit, underwent at least one passive heat stress that increased internal temperature ~1.3°C, while either MSNA (n = 8) or SSNA (n = 8) was continuously recorded. Heat stress significantly increased mean skin temperature (Δ~5°C, P < 0.001), internal temperature (Δ~1.3°C, P < 0.001), mean body temperature (Δ~2.0°C, P < 0.001), heart rate (Δ~40 beats/min, P < 0.001), and cutaneous vascular conductance [Δ~1.1 arbitrary units (AU)/mmHg, P < 0.001]. Mean arterial blood pressure was well maintained (P = 0.52). Relative to baseline, MSNA increased midway through heat stress (Δ core temperature 0.63 ± 0.01°C) when expressed as burst frequency (26 ± 14 to 45 ± 16 bursts/min, P = 0.001), burst incidence (39 ± 13 to 48 ± 14 bursts/100 cardiac cyles, P = 0.03), or total activity (317 ± 170 to 489 ± 150 units/min, P = 0.02) and continued to increase until the end of heat stress (burst frequency: 61 ± 15 bursts/min, P = 0.01; burst incidence: 56 ± 11 bursts/100 cardiac cyles, P = 0.04; total activity: 648 ± 158 units/min, P = 0.01) relative to the mid-heating stage. Similarly, SSNA (total activity) increased midway through the heat stress (normothermia; 1,486 ± 472 to mid heat stress 6,467 ± 5,256 units/min, P = 0.03) and continued to increase until the end of heat stress (11,217 ± 6,684 units/min, P = 0.002 vs. mid-heat stress). These results indicate that both MSNA and SSNA continue to increase as internal temperature is elevated above previously reported values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号