首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Persisters represent a small subpopulation of non- or slow-growing bacterial cells that are tolerant to killing by antibiotics. Despite their prominent role in the recalcitrance of chronic infections to antibiotic therapy, the mechanism of their formation has remained elusive. We show that sorted cells of Escherichia coli with low levels of energy-generating enzymes are better able to survive antibiotic killing. Using microfluidics time-lapse microscopy and a fluorescent reporter for in vivo ATP measurements, we find that a subpopulation of cells with a low level of ATP survives killing by ampicillin. We propose that these low ATP cells are formed stochastically as a result of fluctuations in the abundance of energy-generating components. These findings point to a general “low energy” mechanism of persister formation.

Persisters represent a small subpopulation of non- or slow-growing bacterial cells that are tolerant to killing by antibiotics, but the mechanism of their formation has remained elusive. This study of E. coli shows that stochastic heterogeneity in levels of energy-generating enzymes results in a subpopulation of cells with low ATP that are tolerant to antibiotics.  相似文献   

2.
Bacterial persistence represents a simple of phenotypic heterogeneity, whereby a proportion of cells in an isogenic bacterial population can survive exposure to lethal stresses such as antibiotics. In contrast, genetically based antibiotic resistance allows for continued growth in the presence of antibiotics. It is unclear, however, whether resistance and persistence are complementary or alternative evolutionary adaptations to antibiotics. Here, we investigate the co‐evolution of resistance and persistence across the genus Pseudomonas using comparative methods that correct for phylogenetic nonindependence. We find that strains of Pseudomonas vary extensively in both their intrinsic resistance to antibiotics (ciprofloxacin and rifampicin) and persistence following exposure to these antibiotics. Crucially, we find that persistence correlates positively to antibiotic resistance across strains. However, we find that different genes control resistance and persistence implying that they are independent traits. Specifically, we find that the number of type II toxin–antitoxin systems (TAs) in the genome of a strain is correlated to persistence, but not resistance. Our study shows that persistence and antibiotic resistance are complementary, but independent, evolutionary adaptations to stress and it highlights the key role played by TAs in the evolution of persistence.  相似文献   

3.
细菌药物耐受   总被引:1,自引:1,他引:0  
细菌药物耐受(Drug tolerance)是指在没有发生耐药突变的情况下细菌耐受抗生素杀菌的能力,表现为细菌群体难以或不能被杀菌型药物清除。细菌药物耐受的调控机制包括群体异质性和压力应答两种途径。药物耐受性的本质是细菌通过调控或遗传突变的方式改变生理代谢状态,从而抵制药物引起的细胞死亡途径。比如,处于缓慢生长或生长停滞生理状态的细菌往往能够抵抗药物的杀菌作用。临床研究发现细菌药物耐受是导致持续性感染疾病迁延难愈、复发率高的病原学机制之一。同时,研究证明耐受性的形成是细菌耐药性(Drug resistance)产生的进化途径之一。因此,揭示细菌药物耐受的机制将有助于人们深入了解抗生素的杀菌机理,以及细菌耐药性形成的适应性进化机制,并为新型杀菌药物以及药物增效剂靶标的发现和抗生素合理使用策略的开发奠定理论基础。  相似文献   

4.
Antibiotics have revolutionized the treatment of infectious disease but have also rapidly selected for the emergence of resistant pathogens. Traditional methods of antibiotic discovery have failed to keep pace with the evolution of this resistance, which suggests that new strategies to combat bacterial infections may be required. An improved understanding of bacterial stress responses and evolution suggests that in some circumstances, the ability of bacteria to survive antibiotic therapy either by transiently tolerating antibiotics or by evolving resistance requires specific biochemical processes that may themselves be subject to intervention. Inhibiting these processes may prolong the efficacy of current antibiotics and provide an alternative to escalating the current arms race between antibiotics and bacterial resistance. Though these approaches are not clinically validated and will certainly face their own set of challenges, their potential to protect our ever-shrinking arsenal of antibiotics merits their investigation. This Review summarizes the early efforts toward this goal.  相似文献   

5.
Antimicrobial resistance (AMR) and persistence are associated with an elevated risk of treatment failure and relapsing infections. They are thus important drivers of increased morbidity and mortality rates resulting in growing healthcare costs. Antibiotic resistance is readily identifiable with standard microbiological assays, and the threat imposed by antibiotic resistance has been well recognized. Measures aiming to reduce resistance development and spreading of resistant bacteria are being enforced. However, the phenomenon of bacteria surviving antibiotic exposure despite being fully susceptible, so‐called antibiotic persistence, is still largely underestimated. In contrast to antibiotic resistance, antibiotic persistence is difficult to measure and therefore often missed, potentially leading to treatment failures. In this review, we focus on bacterial mechanisms allowing evasion of antibiotic killing and discuss their implications on human health. We describe the relationship between antibiotic persistence and bacterial heterogeneity and discuss recent studies that link bacterial persistence and tolerance with the evolution of antibiotic resistance. Finally, we review persister detection methods, novel strategies aiming at eradicating bacterial persisters and the latest advances in the development of new antibiotics.  相似文献   

6.
To survive in rapidly changing environmental conditions, bacteria have evolved a diverse set of regulatory pathways that govern various adaptive responses. Recent research has reinforced the notion that bacteria use feedback-based circuitry to generate population heterogeneity in natural situations. Using artificial gene networks, it has been shown that a relatively simple 'wiring' of a bacterial genetic system can generate two or more stable subpopulations within an overall genetically homogeneous population. This review discusses the ubiquity of these processes throughout nature, as well as the presumed molecular mechanisms responsible for the heterogeneity observed in a selection of bacterial species.  相似文献   

7.
Prolonged lag time can be induced by starvation contributing to the antibiotic tolerance of bacteria. We analyze the optimal lag time to survive and grow the iterative and stochastic application of antibiotics. A simple model shows that the optimal lag time can exhibit a discontinuous transition when the severeness of the antibiotic application, such as the probability to be exposed the antibiotic, the death rate under the exposure, and the duration of the exposure, is increased. This suggests the possibility of reducing tolerant bacteria by controlled usage of antibiotics application. When the bacterial populations are able to have two phenotypes with different lag times, the fraction of the second phenotype that has different lag time shows a continuous transition. We then present a generic framework to investigate the optimal lag time distribution for total population fitness for a given distribution of the antibiotic application duration. The obtained optimal distributions have multiple peaks for a wide range of the antibiotic application duration distributions, including the case where the latter is monotonically decreasing. The analysis supports the advantage in evolving multiple, possibly discrete phenotypes in lag time for bacterial long-term fitness.  相似文献   

8.
Horizontal gene transfer by conjugative plasmids plays a critical role in the evolution of antibiotic resistance. Interactions between bacteria and other organisms can affect the persistence and spread of conjugative plasmids. Here we show that protozoan predation increased the persistence and spread of the antibiotic resistance plasmid RP4 in populations of the opportunist bacterial pathogen Serratia marcescens. A conjugation-defective mutant plasmid was unable to survive under predation, suggesting that conjugative transfer is required for plasmid persistence under the realistic condition of predation. These results indicate that multi-trophic interactions can affect the maintenance of conjugative plasmids with implications for bacterial evolution and the spread of antibiotic resistance genes.  相似文献   

9.
For an infecting bacterium the human body provides several potential ecological niches with both internally (e.g. host immunity) and externally (e.g. antibiotic use) imposed growth restrictions that are expected to drive adaptive evolution in the bacterium, including the development of antibiotic resistance. To determine the extent and pattern of heterogeneity generated in a bacterial population during long-term antibiotic treatment, we examined in a monoclonal Mycobacterium tuberculosis infection antibiotic resistant mutants isolated from one patient during a 9-years period. There was a progressive accumulation of resistance mutations in the infecting clone. Furthermore, apparent clonal sweeps as well as co-existence of different resistant mutants were observed during this time, demonstrating that during treatment there is a high degree of dynamics in the bacterial population. These findings have important implications for diagnostics and treatment of drug resistant tuberculosis infections.  相似文献   

10.
Inactivation of β ‐lactam antibiotics by resistant bacteria is a ‘cooperative’ behavior that may allow sensitive bacteria to survive antibiotic treatment. However, the factors that determine the fraction of resistant cells in the bacterial population remain unclear, indicating a fundamental gap in our understanding of how antibiotic resistance evolves. Here, we experimentally track the spread of a plasmid that encodes a β ‐lactamase enzyme through the bacterial population. We find that independent of the initial fraction of resistant cells, the population settles to an equilibrium fraction proportional to the antibiotic concentration divided by the cell density. A simple model explains this behavior, successfully predicting a data collapse over two orders of magnitude in antibiotic concentration. This model also successfully predicts that adding a commonly used β ‐lactamase inhibitor will lead to the spread of resistance, highlighting the need to incorporate social dynamics into the study of antibiotic resistance.  相似文献   

11.
Enterococci, which are on the WHO list of priority pathogens, are commonly encountered in hospital acquired infection and are becoming increasing significant due to the development of strains resistant to multiple antibiotics. Enterococci are also important microorganisms in the environment, and their presence is frequently used as an indicator of faecal pollution. Their success is related to their ability to survive within a broad range of habitats and the ease by which they acquire mobile genetic elements, including plasmids, from other bacteria. The enterococci are frequently present within a bacterial biofilm, which provides stability and protection to the bacterial population along with an opportunity for a variety of bacterial interactions. Enterococci can accept extrachromosomal DNA both from within its own species and from other bacterial species, and this is enhanced by the proximity of the donor and recipient strains. It is this exchange of genetic material that makes the role of biofilms such an important aspect of the success of enterococci. There remain many questions regarding the most suitable model systems to study enterococci in biofilms and regarding the transfer of genetic material including antibiotic resistance in these biofilms. This review focuses on some important aspects of biofilm in the context of horizontal gene transfer (HGT) in enterococci.  相似文献   

12.
DnaK, the bacterial homolog of human Hsp70, plays an important role in pathogens survival under stress conditions, like antibiotic therapies. This chaperone sequesters protein aggregates accumulated in bacteria during antibiotic treatment reducing the effect of the cure. Although different classes of DnaK inhibitors have been already designed, they present low specificity. DnaK is highly conserved in prokaryotes (identity 50–70%), which encourages the development of a unique inhibitor for many different bacterial strains. We used the DnaK of Acinetobacter baumannii as representative for our analysis, since it is one of the most important opportunistic human pathogens, exhibits a significant drug resistance and it has the ability to survive in hospital environments. The E.coli DnaK was also included in the analysis as reference structure due to its wide diffusion. Unfortunately, bacterial DnaK and human Hsp70 have an elevated sequence similarity. Therefore, we performed a differential analysis of DnaK and Hsp70 residues to identify hot spots in bacterial proteins that are not present in the human homolog, with the aim of characterizing the key pharmacological features necessary to design selective inhibitors for DnaK. Different conformations of DnaK and Hsp70 bound to known inhibitor-peptides for DnaK, and ineffective for Hsp70, have been analysed by molecular dynamics simulations to identify residues displaying stable and selective interactions with these peptides. Results achieved in this work show that there are some residues that can be used to build selective inhibitors for DnaK, which should be ineffective for the human Hsp70.  相似文献   

13.
抗生素是由微生物在生长发育后期产生的次级代谢产物,具有杀死或抑制细菌生长的能力,因此被广泛应用于细菌感染的临床治疗。在长期的进化过程中,细菌采取多种方式应对环境中抗生素的威胁。除了广为人知的抗生素耐药性(resistance)之外,细菌还能对抗生素产生耐受性(tolerance)和持留性(persistence),严重影响抗生素的临床疗效。鸟苷四磷酸(guanosine tetraphosphate, ppGpp)和鸟苷五磷酸(guanosine pentaphosphate, pppGpp) (本文统称ppGpp)是细菌应对营养饥饿等不利环境时产生的"报警"信号分子,其能够在全局水平调控基因的表达,使细菌适应不利的环境。越来越多的研究表明,ppGpp与细菌应对抗生素胁迫密切相关。基于此,本文综述了细菌中ppGpp的合成与水解及其作用机制,并重点阐述了ppGpp介导抗生素胁迫应答的分子机制,以期为新型抗生素的开发提供新思路。  相似文献   

14.
We have developed a rapid microfluidic method for antibiotic susceptibility testing in a stress-based environment. Fluid is passed at high speeds over bacteria immobilized on the bottom of a microfluidic channel. In the presence of stress and antibiotic, susceptible strains of bacteria die rapidly. However, resistant bacteria survive these stressful conditions. The hypothesis behind this method is new: stress activation of biochemical pathways, which are targets of antibiotics, can accelerate antibiotic susceptibility testing. As compared to standard antibiotic susceptibility testing methods, the rate-limiting step - bacterial growth - is omitted during antibiotic application. The technical implementation of the method is in a combination of standard techniques and innovative approaches. The standard parts of the method include bacterial culture protocols, defining microfluidic channels in polydimethylsiloxane (PDMS), cell viability monitoring with fluorescence, and batch image processing for bacteria counting. Innovative parts of the method are in the use of culture media flow for mechanical stress application, use of enzymes to damage but not kill the bacteria, and use of microarray substrates for bacterial attachment. The developed platform can be used in antibiotic and nonantibiotic related drug development and testing. As compared to the standard bacterial suspension experiments, the effect of the drug can be turned on and off repeatedly over controlled time periods. Repetitive observation of the same bacterial population is possible over the course of the same experiment.  相似文献   

15.
Antibiotic treatment failure of infection is common and frequently occurs in the absence of genetically encoded antibiotic resistance mechanisms. In such scenarios, the ability of bacteria to enter a phenotypic state that renders them tolerant to the killing activity of multiple antibiotic classes is thought to contribute to antibiotic failure. Phagocytic cells, which specialize in engulfing and destroying invading pathogens, may paradoxically contribute to antibiotic tolerance and treatment failure. Macrophages act as reservoirs for some pathogens and impede penetration of certain classes of antibiotics. In addition, increasing evidence suggests that subpopulations of bacteria can survive inside these cells and are coerced into an antibiotic-tolerant state by host cell activity. Uncovering the mechanisms that drive immune-mediated antibiotic tolerance may present novel strategies to improving antibiotic therapy.  相似文献   

16.
Antibiotics were initially viewed as "wonder drugs" primarily because they were introduced at a time when only surgical drainage or spontaneous cures were available to treat serious bacterial infections. During the five or six decades since their introduction, several classes of these drugs became available including sulfonamides and trimethoprim, penicillins, cephalosporins, chloramphenicol, tetracyclines, colimycins, macrolides, lincosamides, streptogramins, rifamycins, glycopeptides, aminoglycosides, fluoroquinolones, oxazolidinones, glycylglycines, lipoglycopeptides, and variations on these themes. Unfortunately, through a variety of mechanisms and perhaps as a result of their profligate use, many bacterial groups are exhibiting resistance to these antibiotics. At present, most bacterial infections can still be treated with available antibiotics used alone or in combination, but increasing numbers of clinical failures with the current armamentarium can be expected. Optimizing drug dosing and duration might help minimize the emergence of resistance in some situations. However, the future could look dim, as there are relatively few new agents on the horizon. A bold new look for antibacterial targets is needed. Surely our scientific abilities are up to this challenge. New approaches to antimicrobial chemotherapy are needed if we are to survive the increasing rates of antibiotic resistance predicted for the future.  相似文献   

17.
18.
19.
Type IV secretion occurs across a wide range of prokaryotic cell envelopes: Gram-negative, Gram-positive, cell wall-less bacteria and some archaea. This diversity is reflected in the heterogeneity of components that constitute the secretion machines. Macromolecules are secreted in an ATP-dependent process using an envelope-spanning multi-protein channel. Similar to the type III systems, this apparatus extends beyond the cell surface as a pilus structure important for direct contact and penetration of the recipient cell surface. Type IV systems are remarkably versatile in that they mobilize a broad range of substrates, including single proteins, protein complexes, DNA and nucleoprotein complexes, across the cell envelope. These machines have broad clinical significance not only for delivering bacterial toxins or effector proteins directly into targeted host cells, but also for direct involvement in phenomena such as biofilm formation and the rapid horizontal spread of antibiotic resistance genes among the microbial community.  相似文献   

20.
Bacterial resistance to antibiotics continues to pose a serious threat to human and animal health. Given the considerable spatial and temporal heterogeneity in the distribution of resistance and the factors that affect its evolution, dissemination and persistence, we argue that antibiotic resistance must be viewed as an ecological problem. A fundamental difficulty in assessing the causal relationship between antibiotic use and resistance is the confounding influence of geography: the co-localization of resistant bacterial species with antibiotic use does not necessarily imply causation and could represent the presence of environmental conditions and factors that have independently contributed to the occurrence of resistance. Here, we show how landscape ecology, which links the biotic and abiotic factors of an ecosystem, might help to untangle the complexity of antibiotic resistance and improve the interpretation of ecological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号