首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To detect microbial infection multicellular organisms have evolved sensing systems for pathogen-associated molecular patterns (PAMPs). Here, we identify bacterial cold shock protein (CSP) as a new such PAMP that acts as a highly active elicitor of defense responses in tobacco. Tobacco cells perceive a conserved domain of CSP and synthetic peptides representing 15 amino acids of this domain-induced responses at subnanomolar concentrations. Central to the elicitor-active domain is the RNP-1 motif KGFGFITP, a motif conserved also in many RNA- and DNA-binding proteins of eukaryotes. Csp15-Nsyl, a peptide representing the domain with highest homology to csp15 in a protein of Nicotiana sylvestris exhibited only weak activity in tobacco cells. Crystallographic and genetic data from the literature show that the RNP-1 domain of bacterial CSPs resides on a protruding loop and exposes a series of aromatic and basic side chains to the surface that are essential for the nucleotide-binding activity of CSPs. Similarly, these side chains were also essential for elicitor activity and replacement of single residues in csp15 with Ala strongly reduced or abolished activity. Most strikingly, csp15-Ala10, a peptide with the RNP-1 motif modified to KGAGFITP, lacked elicitor activity but acted as a competitive antagonist for CSP-related elicitors. Bacteria commonly have a small family of CSP-like proteins including both cold-inducible and noninducible members, and Csp-related elicitor activity was detected in extracts from all bacteria tested. Thus, the CSP domain containing the RNP-1 motif provides a structure characteristic for bacteria in general, and tobacco plants have evolved a highly sensitive chemoperception system to detect this bacterial PAMP.  相似文献   

2.
Human peripheral blood monocytes were exposed to single or pairs of cell stress proteins (CSPs), specifically Hsp10, Hsp27, Hsp60 and Hsp70—the former two having anti-inflammatory actions while the latter pair being assumed to be pro-inflammatory in activity. This study was to test if these proteins exhibited any network behaviour. To control for possible lipopolysaccharide contamination, polymyxin B was used. Surprisingly, at concentrations higher than 1 μg/ml, polymyxin B itself could induce cytokine synthesis. A number of commercial sources of the molecular chaperones were tested, and marked variations in monocyte cytokine synthesis were found. All four CSPs stimulated the same profile of IL-1/IL-6 synthesis and IL-10/TNF-α synthesis although the kinetics of production of these two pairs of cytokines were very different. A key question was whether extracellular molecular chaperones exhibited network behaviour. To test this, monocytes were cultured with suboptimal concentrations of single CSP and pairs of CSP to look for additive, synergistic or antagonistic cell responses. The major finding was that pairs of molecular chaperones, including chaperones thought to stimulate monocyte cytokine synthesis, could produce significant antagonistic cellular responses. This demonstrates that extracellular CSPs constitute an additional potent layer within the complex cytokine network and furthermore suggests that monocytes have evolved to dampen their immune responses upon exposure to extracellular networks of CSPs—perhaps as a mechanism for protecting cells against detrimental cellular stress responses.  相似文献   

3.
Cold shock proteins (CSPs) have a widespread occurrence from prokaryotes to eukaryotes including plants. These proteins are known to possess nucleic acid binding properties. CSPs have a single cold shock domain in prokaryotes while N-terminal and C-terminal flanking regions are present in eukaryotic CSPs. The objective of this study was to investigate nucleic acid binding preferential for the chickpea CSP. Full cDNA of chickpea CSP was cloned and sequenced. The sequence was submitted to GenBank (accession no. KM036036) at NCBI. Multiple sequence alignment and phylogenetic analysis further revealed that the inferred amino acid sequence belongs to CSP family. Molecular docking was performed between the CSP and variety of nucleic acids entities. These results suggest that CSPs of chickpea possess preferential binding affinity for single stranded nucleic acids. Docking results suggest that homo-polymer entities of RNA polyU RNA (20mer) form most stable complex.  相似文献   

4.
Mexiletine, an effective class IB antiarrhythmic agent, and its analogs were resolved on three different crown ether‐based chiral stationary phases (CSPs), one (CSP 1 ) of which is based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid and the other two (CSP 2 and CSP 3 ) are based on (3,3’‐diphenyl‐1,1’‐binaphthyl)‐20‐crown‐6. Mexiletine was resolved with a resolution (RS) of greater than 1.00 on CSP 1 and CSP 3 containing residual silanol group‐protecting n‐octyl groups on the silica surface, but with a resolution (RS) of less than 1.00 on CSP 2 . The chromatographic behaviors for the resolution of mexiletine analogs containing a substituted phenyl group at the chiral center on the three CSPs were quite dependent on the phenoxy group of analytes. Namely, mexiletine analogs containing 2,6‐dimethylphenoxy, 3,4‐dimethylphenoxy, 3‐methylphenoxy, 4‐methylphenoxy, and a simple phenoxy group were resolved very well on the three CSPs even though the chiral recognition efficiencies vary with the CSPs. However, mexiletine analogs containing 2‐methylphenoxy group were not resolved at all or only slightly resolved. Among the three CSPs, CSP 3 was found to show the highest chiral recognition efficiencies for the resolution of mexiletine and its analogs, especially in terms of resolution (RS). Chirality 26:272–278, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Cold shock proteins (CSPs) are ancient nucleic acid-binding proteins and well conserved from bacteria to animals as well as plants. In prokaryotes, CSPs possess a single cold shock domain (CSD) while animal CSPs, flanked by N- and C-terminal domains, are commonly named Y-box proteins. Interestingly, the plants CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. The CSPs have been shown to play important role in development and stress adaptation in various plant species. The objective of this study was to find out the possible nucleic acid-binding affinities of whole CSP as well as independent domains, so that role of each individual domain may be revealed in Arabidopsis thaliana, the model plant species. The structure of CSP 3 protein from A. thaliana was modeled by homology-based approach and docking was done with different nucleic acid types.  相似文献   

6.
7.
Novel chiral selectors based on 3,5-dimethyl phenylcarbamoylated β-cyclodextrin connecting quinine (QN) or quinidine (QD) moiety were synthesized and immobilized on silica gel. Their chromatographic performances were investigated by comparing to the 3,5-dimethyl phenylcarbamoylated β-cyclodextrin (β-CD) chiral stationary phase (CSP) and 9-O-(tert-butylcarbamoyl)-QN-based CSP (QN-AX). Fmoc-protected amino acids, chiral drug cloprostenol (which has been successfully employed in veterinary medicine), and neutral chiral analytes were evaluated on CSPs, and the results showed that the novel CSPs characterized as both enantioseparation capabilities of CD-based CSP and QN/QD-based CSPs have broader application range than β-CD-based CSP or QN/QD-based CSPs. It was found that QN/QD moieties play a dominant role in the overall enantioseparation process of Fmoc-amino acids accompanied by the synergistic effect of β-CD moiety, which lead to the different enantioseparation of β-CD-QN-based CSP and β-CD-QD-based CSP. Furthermore, new CSPs retain extraordinary enantioseparation of cyclodextrin-based CSP for some neutral analytes on normal phase and even exhibit better enantioseparation than the corresponding β-CD-based CSP for certain samples.  相似文献   

8.
9.
10.
Magga JM  Jarvis SE  Arnot MI  Zamponi GW  Braun JE 《Neuron》2000,28(1):195-204
Cysteine string proteins (CSPs) are secretory vesicle proteins bearing a "J domain" and a palmitoylated cysteine-rich "string" region that are critical for neurotransmitter release. The precise role of CSP in neurotransmission is controversial. Here, we demonstrate a novel interaction between CSP, receptor-coupled trimeric GTP binding proteins (G proteins), and N-type Ca2+ channels. G. subunits interact with the J domain of CSP in an ATP-dependent manner; in contrast, Gbetagamma subunits interact with the C terminus of CSP in both the presence and absence of ATP. The interaction of CSP with both G proteins and N-type Ca2+ channels results in a tonic G protein inhibition of the channels. In view of the crucial importance of N-type Ca2+ channels in presynaptic vesicle release, our data attribute a key role to CSP in the fine tuning of neurotransmission.  相似文献   

11.
Cysteine string proteins (CSPs) are secretory vesicle chaperone proteins that contain: (i) a heavily palmitoylated cysteine string (comprised of 14 cysteine residues, responsible for the localization of CSP to secretory vesicle membranes), (ii) an N-terminal J-domain (DnaJ domain of Hsc70, 70 kDa heat-shock cognate protein family of co-chaperones), and (iii) a linker domain (important in mediating CSP effects on secretion). In this study, we investigated the localization of CSP1 in rat parotid acinar cells and evaluated the role of CSP1 in parotid secretion. RT-PCR and western blotting revealed that CSP1 was expressed and associated with Hsc70 in rat parotid acinar cells. Further, CSP1 associated with syntaxin 4, but not with syntaxin 3, on the apical plasma membrane. Introduction of anti-CSP1 antibody into SLO-permeabilized acinar cells enhanced isoproterenol (IPR)-induced amylase release. Introduction of GST-CSP11–112, containing both the J-domain and the adjacent linker region, enhanced IPR-induced amylase release, whereas neither GST-CSP11–82, containing the J-domain only, nor GST-CSP183–112, containing the linker region only, did produce detectable enhancement. These results indicated that both the J-domain and the linker domain of CSP1 are necessary to function an important role in acinar cell exocytosis.  相似文献   

12.
13.
Chen J  Li MZ  Xiao YH  Chen W  Li SR  Bai ZW 《Chirality》2011,23(3):228-236
(2S,3S)-2,3-Bis(3,5-dimethylphenylcarbonyloxy)-3-(benzyloxycarbonyl)-propanoic acid and (2S,3S)-2,3-bis(1-naphthalenecarbonyloxy)-3-(benzyloxycarbonyl)-propanoic acid were synthesized from D-tartaric acid. These two compounds were chlorinated to afford two chiral selectors for chiral stationary phases (CSPs). The selectors were separately immobilized on aminated silica gel to give two single selector CSPs; and were simultaneously immobilized to obtain a mixed selector CSP. Comparing to the single selector CSPs, the mixed selector CSP bears the enhanced enantioseparation ability, suggesting that the two selectors in the mixed selector CSP are consistent for chiral recognition in most mobile phase conditions.  相似文献   

14.
This paper describes the enantiorecognition of (±)nicotine and (±)nornicotine by high-performance liquid chromatography using two derivatized cellulose chiral stationary phases (CSPs) operated in the normal phase mode. It was found that different substituents linked to the cellulose backbone significantly influence the chiral selectivity of the derivatized CSP. The results showed that, in general, the tris(4-methylbenzoyl) cellulose CSP (Chiralcel OJ) surpasses tris(3,5-dimethylphenyl carbamoyl) cellulose CSP (Chiralcel OD). On the former column, the resolution (±)nicotine and (±)nornicotine enantiomers depended largely on mobile phase compositions. For the separation of the nicotine enantiomers, the addition of trifluoroacetic acid to a 95:5 hexane/alcohol mobile phase greatly improved the enantioresolution, probably due to enhanced hydrogen bonding interactions between the protonated analytes and the CSP. For (±)nornicotine separation, a reduction in the concentration of alcohol in the mobile phase was more effective than the addition of trifluoroacetic acid. Possible solute-mobile phase-stationary phase interactions are discussed to explain how different additives in the mobile phase and different substituents on the cellulose glucose units of the CSPs affect the separation of both pairs of enantiomers. Chirality 10:364–369, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    15.
    Small chemosensory proteins (CSPs) belong to a conserved, but poorly understood protein family that has been implicated in transporting chemical stimuli within insect sensilla. However, their expression patterns suggest that these molecules are also critical for other functions including early development. Here we used both bioinformatics and experimental approaches to characterize the CSP gene family in a social insect, the Western honey bee Apis mellifera, and then compared its members to CSPs in other arthropods. The number of CSPs in the honey bee genome (six) is similar to that found in the sequenced dipteran species (four-seven), but is much lower than the number of CSPs in the moth or in the beetle (around 20 each). These differences seem to be the result of lineage specific expansions. Our analysis of CSPs in a number of arthropods reveals a conserved gene family found in both Mandibulates and Chelicerates. Expressional profiling in diverse tissues and throughout development reveals broader than expected patterns of expression with none of the CSPs restricted to the antennae and one found only in the queen ovaries and in embryos. We conclude that CSPs are multifunctional context-dependent proteins involved in diverse cellular processes ranging from embryonic development to chemosensory signal transduction. Some CSPs may function in cuticle synthesis, consistent with their evolutionary origins in the arthropods.  相似文献   

    16.
    In our recent work, a series of dendritic chiral stationary phases (CSPs) were synthesized, in which the chiral selector was L‐2‐(p‐toluenesulfonamido)‐3‐phenylpropionyl chloride (selector I), and the CSP derived from three‐generation dendrimer showed the best separation ability. To further investigate the influence of the structures of dendrimer and chiral selector on enantioseparation ability, in this work, another series CSPs ( CSPs 1‐4 ) were prepared by immobilizing (1S,2R)‐1,2‐diphenyl‐2‐(3‐phenylureido)ethyl 4‐isocyanatophenylcarbamate (selector II) on one‐ to four‐generation dendrimers that were prepared in previous work. CSPs 1 and 4 demonstrated the equivalent enantioseparation ability. CSPs 2 and 3 showed the best and poorest enantioseparation ability respectively. Basically, these two series of CSPs exhibited the equivalent enantioseparation ability although the chiral selectors were different. Considering the enantioseparation ability of the CSP derived from aminated silica gel and selector II is much better than that of the one derived from aminated silica gel and selector I, it is believed that the dendrimer conformation essentially impacts enantioseparation. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

    17.
    The genome of the silkmoth Bombyx mori contains 44 genes encoding odorant-binding proteins (OBPs) and 20 encoding chemosensory proteins (CSPs). In this work, we used a proteomic approach to investigate the expression of proteins of both classes in the antennae of adults and in the female pheromone glands. The most abundant proteins found in the antennae were the 4 OBPs (PBP, GOBP1, GOBP2, and ABP) and the 2 CSPs (CSP1 and CSP2) previously identified and characterized. In addition, we could detect only 3 additional OBPs and 2 CSPs, with clearly different patterns of expression between the sexes. Particularly interesting, on the other hand, is the relatively large number of binding proteins (1 OBP and 7 CSPs) expressed in the female pheromone glands, some of them not present in the antennae. In the glands, these proteins could be likely involved in the solubilization of pheromonal components and their delivery in the environment.  相似文献   

    18.
    19.
    We recently reported a new C3‐symmetric (R)‐phenylglycinol N‐1,3,5‐benzenetricarboxylic acid‐derived chiral high‐performance liquid chromatography (HPLC) stationary phase (CSP 1) that demonstrated better results as compared to a previously described N‐3,5‐dintrobenzoyl (DNB) (R)‐phenylglycinol‐derived CSP. Over a decade ago, (S)‐leucinol, (R)‐phenylglycine, and (S)‐leucine derivatives were used as the starting materials of 3,5‐DNB‐based Pirkle‐type CSPs for chiral separation. In this study, three new C3‐symmetric CSPs (CSP 2, 3, and 4) were prepared by combining the ideas and results mentioned above. Here we describe the synthetic procedures and applications of the new C3‐symmetric CSPs (CSP 2–CSP 4).  相似文献   

    20.
    The direct HPLC enantioseparation of Mianserin and a series of aptazepine derivatives is accomplished on polysaccharide-based chiral stationary phases (CSPs). The resolutions are performed on the coated-type Chiralcel OD and Chiralpak AD CSPs and on the first commercially available immobilized-type Chiralpak IA CSP, in normal-phase and polar-organic modes. The complete separation of enantiomers of all racemates investigated was successfully achieved under at least one of CSP/eluent combinations employed. Pure alcohols such ethanol or 2-propanol, with a fixed percentage of DEA added, serve as valuable alternatives to the more common n-hexane-based normal-phase eluents in resolution of Mianserin on the AD CSP. In order to study the chiroptical properties of aptazepine derivatives, chromatographic resolutions are carried out at semipreparative scale using Chiralpak AD and Chiralpak IA as CSPs. Nonconventional dichloromethane-based eluents have permitted to expand the chiral resolving ability of the immobilized Chiralpak IA CSP and to perform mg-scale enantioseparations with an analytical-size column. Assignment of the absolute configuration of the separated enantiomers is empirically established by comparing their chiroptical data with those of structurally related Mianserin.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号