首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the kinship structure of an island population of the Great Tit (Parus major). Kinship of birds could be inferred by comparing their family trees. Dispersal was also studied to explain the observed pattern of kinship. On the island of Vlieland the tits breed in several wooded areas. Both males and females preferred to breed in their natal area; males did so more strongly than females. Hence gene flow between the areas is restricted. However, within the largest wooded area females showed random dispersal, while males showed a slight tendency to breed near their natal site. The degree of kinship of neighbouring birds is a suitable control group for the relatedness of partners that takes into account the effects of dispersal. In the largest wooded area, birds were on average equally related to their partner and to their neighbours. Moreover, the mean coefficient of kinship between male and female neighbours was equal to the average kinship in this part of the population. We conclude that mating is random with respect to kinship. There is no evidence for avoidance of inbreeding. It is unlikely that kin recognition plays an important role in the process of mate choice in this population of Great Tits. We suggest that ecological factors are the main causes for the observed patterns of dispersal and mating. On the island more female than male immigrants enter the population each year. Incidental data indicate an exchange of birds between the population studied and surrounding populations. Ancestries of immigrants are not known, and indeed a first analysis of all birds, including immigrants, showed that males were more closely related than females. However, differential immigration could not fully explain the observed difference in kinship. The presence of local adaptation in males is suggested as a possible additional cause.  相似文献   

2.
We examined predictions on the proportion of dispersing natal males and females, dispersal distances, the age at dispersal and the potential for inbreeding over a 6-year period in a free-living population of grey mouse lemurs. We used monthly mark-recapture procedures to determine individual locations and interindividual distances. The analysis of seven polymorphic microsatellite markers for 213 (130 males, 83 females) individuals allowed us to estimate relatedness coefficients and kinship relationships. Closely related males ranged further from each other than closely related females and natal males were found further from their potential mothers than were females. Natal males were more likely to disperse from their birth sites than females, although male dispersal was not universal. Male breeding dispersal was detected in half of the long-term observations. Males therefore seem to be the predominant vectors for gene flow between populations and social units. Females usually stayed within one to two home range diameters of their potential mother, facilitating the evolution of cooperative behaviour by kin selection among females. Most dispersal took place before the mating season, indicating an age of less than 7 months for natal dispersal. The analysis of spatiotemporal coexistence revealed the potential for inbreeding in only 3.8% of the potential mother-son dyads, but in 21.9% of the potential father-daughter dyads and in 41.7% of other closely related male-female dyads. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour   相似文献   

3.
A growing body of evidence shows within-population variation in natal dispersal, but the effects of such variation on social relationships and the kin composition of groups remain poorly understood. We investigate the link between dispersal, the kin composition of groups, and proximity patterns in a population of black-and-white colobus (Colobus vellerosus) that shows variation in female dispersal. From 2006 to 2011, we collected behavioral data, demographic data, and fecal samples of 77 males and 92 females residing in eight groups at Boabeng-Fiema, Ghana. A combination of demographic data and a genetic network analysis showed that although philopatry was female-biased, only about half of the females resided in their natal groups. Only one group contained female-female dyads with higher average relatedness than randomly drawn animals of both sexes from the same group. Despite between-group variation in female dispersal and kin composition, female-female dyads in most of the study groups had higher proximity scores than randomly drawn dyads from the same group. We conclude that groups fall along a continuum from female dispersed, not kin-based, and not bonded to female philopatric, kin-based, and bonded. We found only partial support for the predicted link between dispersal, kin composition, and social relationships. In contrast to most mammals where the kin composition of groups is a good predictor of the quality of female-female relationships, this study provides further support for the notion that kinship is not necessary for the development and maintenance of social bonds in some gregarious species.  相似文献   

4.
In this study, we test whether patterns of territory inheritance, social mate choice and female-biased natal dispersal act as inbreeding avoidance mechanisms in the cooperatively breeding Seychelles warbler. Our results show that Seychelles warblers do not reduce the likelihood of inbreeding by avoiding related individuals as mates. The occurrence of natural and experimentally induced territory inheritance did not depend on whether the remaining breeder was a parent of the potential inheritor or an unrelated breeder. Furthermore, dispersing individuals were no less related to their eventual mates than expected given the pool of candidates they could mate with. The female bias in natal dispersal distance observed in the Seychelles warbler does not facilitate inbreeding avoidance because, contrary to our prediction, there was no sex difference in the clustering of related opposite sex breeders around the natal territories of dispersers. As a result, the chance of females mating with relatives was not reduced by their greater dispersal distance compared with that of males.  相似文献   

5.
Female philopatry and male dispersal are the norm for most mammals, and females that remain in their natal region often derive foraging or social benefits from proximity to female kin. However, other factors, such as constraints on group size or a shortage of potential mates, may promote female dispersal even when female kin associations would be beneficial. In these cases, female kin associations might develop, not through female philopatry, but through female emigration to the same group. To date, little attention has been focused on the potential for kin-biased behaviour between females in female-dispersing species. Here we investigate the genetic relationships among adults in eight wild groups of unhabituated western gorillas (Gorilla gorilla) at the Mondika Research Center using microsatellite genotyping of DNA collected from hair and faeces. We found that almost half (40%) of adult females had an adult female relative in the same group and average within-group relatedness among females was significantly higher than that expected under a model of random dispersal. This provides the first genetic evidence that females can maintain social associations with female relatives in spite of routine natal and secondary dispersal. In addition, we show that females appear to avoid related silverback males when making dispersal decisions, suggesting that a strategy of non-random female dispersal may also function to avoid inbreeding.  相似文献   

6.
Paternal kin discrimination: the evidence and likely mechanisms   总被引:2,自引:0,他引:2  
One of the most important assumptions of kin selection theory is that individuals behave differently towards kin than non-kin. In mammals, there is strong evidence that maternal kin are distinguished from non-kin via familiarity. However, little is known about whether or not mammals can also recognize paternal kin as many female mammals, including primates, mate with multiple males near the time of conception, potentially concealing paternal kinship. Genetic data in several mammalian species with a promiscuous mating system and male-biased dispersal reveal a high skew in male reproduction which leads to co-residing paternal half-siblings. In most primates, individuals also form stable bisexual groups creating opportunities for males to interact with their offspring. Here I consider close paternal kin co-resident in the same social group, such as father-offspring and paternal half-siblings (i.e. animals sharing the same father but who were born to different mothers) and review mammalian studies of paternal kin discrimination. Furthermore, I summarize the most likely mechanisms of paternal kin discrimination (familiarity and phenotype matching). When familiarity is the underlying mechanism, mothers and/or the sire could mediate familiarity among paternal half-siblings as well as between fathers and offspring assuming mothers and/or fathers can assess paternity. When animals use phenotype matching, they might use their fathers' template (when the father is present) or self (when the father is absent) to assess paternal kinship in others. Available evidence suggests that familiarity and phenotype matching might be used for paternal kin discrimination and that both mechanisms might apply to a wide range of social mammals characterized by a high skew in male reproduction and co-residence of paternal kin. Among primates, suggested evidence for phenotype matching can often have an alternative explanation, which emphasizes the crucial importance of controlling for familiarity as a potential confounding variable. However, the mechanism/s used to identify paternal kin might differ within a species (as a function of each individual's specific circumstances) as well as among species (depending upon the key sensory modalities of the species considered). Finally, I discuss the possible cues used in paternal kin discrimination and offer suggestions for future studies.  相似文献   

7.
While natal dispersal can have a significant impact on population dynamics, it is typically difficult to quantify. We investigated timing of natal dispersal of the cooperatively breeding Puff-throated Bulbul Alophoixus pallidus in a tropical evergreen forest by modelling the probability of staying in or dispersing from their natal territory whilst taking into account the effects of sex, group size, and the presence of helper(s). Birds did not disperse until the beginning of and during the breeding season following the hatching year. Dispersal was strongly female-biased both in frequency and distance: most females (95%) dispersed away from their natal territories, and of those relocated, traversed 2–7 territories. In contrast, 50% of males remained in the natal territory as helpers in their second year, while relocated dispersing males crossed 1–2 territories. Natal dispersal was not influenced by either group size or the presence of helpers. Males that fledged earlier in the breeding season exhibited higher rates of philopatry than the males that fledged later, but no correlation between fledging date and philopatry was observed in females. The probability of staying in the natal territory during the second year was 0.58 ± 0.14 SE and 0.05 ± 0.04 for males and females, respectively. These findings may add to our understanding of how natal dispersal can reflect social patterns and kin structure in cooperative breeding species from a little-studied tropical forest region.  相似文献   

8.
In most cooperatively breeding birds, individuals do not breed with their natal group members. In order to breed, they have either to disperse into another group or wait for an opposite-sex individual to join their group. In most of these species, females disperse more than males. We develop a dynamic game-theoretic model to account for this asymmetry. When males are physically larger/heavier than females, this allows them to effectively welcome female immigrants into their natal group and overcome the local females' opposition more than vice versa. The model further assumes that the dispersal decision is not confined to a restricted time window, but is rather based on acquired information and responsive to opportunities. The model predicts that (i) females disperse more than males, and (ii) females are willing to tolerate more risks in dispersal than do males. The latter prediction is supported inter alia by the fact that in many cooperatively breeding birds, females disperse at a younger age, and further away from their natal group as compared to dispersing males.  相似文献   

9.
Natal dispersal is usually sex biased in birds and mammals.Female-biased natal dispersal is the prevailing pattern in birdsbut is rare among mammals. Hypotheses explaining sex bias indispersal include the mate-defense mating hypothesis, whichpredicts male-biased dispersal, the resource-defense hypothesispredicting female-biased dispersal, and the competition hypothesis,which predicts that if dispersal is caused by competition forresources between sexes, then the subdominant sex will disperse.We studied natal dispersal of Siberian flying squirrels Pteromysvolans using radio telemetry in Southern Finland in 1996–2004.Of 86 juveniles that survived over the dispersal period, almostall young females dispersed from the natal site, whereas almost40% of males were philopatric. Dispersal was farther for femalesthan males. Females began dispersal on average 2 weeks earlierthan males and were lighter in mass at the onset of dispersalthan later dispersing males. No mate- or resource-defense matingsystem could be found among males, but females seemed to defendnest and apparently food resources, in contrast to the expectationof dispersal bias in resource-defense systems. Competition forresources between sexes does not explain female bias either:in the flying squirrel, the female seems to be the dominantsex. We propose that young females are subordinate to theirmothers and have to disperse to find a vacant, suitable sitefor reproduction.  相似文献   

10.
Dispersal is an important mechanism used to avoid inbreeding. However, dispersal may only be effective for part of an individual's lifespan since, post-dispersal individuals that breed over multiple reproductive events may risk mating with kin of the philopatric sex as they age. We tested this hypothesis in black grouse Tetrao tetrix, and show that yearling females never mated with close relatives whereas older females did. However, matings were not with direct kin suggesting that short-distance dispersal to sites containing kin and subsequent overlap of reproductive lifespans between males and females were causing this pattern. Chick mass was lower when kinship was high, suggesting important fitness costs associated with inbred matings. This study shows that increased inbreeding risk might be a widespread yet rarely considered cost of ageing.  相似文献   

11.
The genetic structure of a population provides critical insights into patterns of kinship and dispersal. Although genetic evidence of kin structure has been obtained for multiple species of social vertebrates, this aspect of population biology has received considerably less attention among solitary taxa in which spatial and social relationships are unlikely to be influenced by kin selection. Nevertheless, significant kin structure may occur in solitary species, particularly if ecological or life history traits limit individual vagility. To explore relationships between genetic structure, kinship, and dispersal in a solitary vertebrate, we compared patterns of genetic variation in two demographically distinct populations of the talar tuco-tuco (Ctenomys talarum), a solitary species of subterranean rodent from Buenos Aires Province, Argentina. Based on previous field studies of C. talarum at Mar de Cobo (MC) and Necochea (NC), we predicted that natal dispersal in these populations is male biased, with dispersal distances for males and females being greater at NC. Analyses of 12 microsatellite loci revealed that in both populations, kin structure was more apparent among females than among males. Between populations, kinship and genetic substructure were more pronounced at MC. Thus, our findings were consistent with predicted patterns of dispersal for these animals. Collectively, these results indicate that populations of this solitary species are characterized by significant kin structure, suggesting that, even in the absence of sociality and kin selection, the spatial distributions and movements of individuals may significantly impact patterns of genetic diversity among conspecifics.  相似文献   

12.
1.?Breeding with kin can reduce individual fitness through the deleterious effects of inbreeding depression. Inbreeding avoidance mechanisms are expected to have developed in most species, and especially in cooperatively breeding species where individuals may delay dispersal until long after sexual maturity. Such potential mechanisms include sex-biased dispersal and avoidance of kin known through associative learning. 2.?The investigation of inbreeding avoidance through dispersal dynamics can be enhanced by combining fine-scale population genetic structure data with detailed behavioural observations of wild populations. 3.?We investigate possible inbreeding avoidance in a wild population of cooperatively breeding southern pied babblers (Turdoides bicolor). A combination of genetic, geographic and observational data is used to examine fine-scale genetic structure, dispersal (including sex-biased dispersal) and inheritance of dominance in cooperatively breeding groups. 4.?Unusually, sex-bias in dispersal distance does not occur. Rather, individuals appear to avoid inbreeding through two routes. First, through dispersal itself: although both males and females disperse locally, they move outside the range within which genetically similar individuals are usually found, going twice as far from natal groups as from non-natal groups. Second, through avoidance of familiar group members as mates: individuals inherit a dominant position in the natal group only when an unrelated breeding partner is present. 5.?This study uses spatial genetic analyses to investigate inbreeding avoidance mechanisms in a cooperative breeder and shows that individuals of both sexes can avoid inbreeding through a dispersal distance mechanism. While it appears that dispersal allows most individuals to move beyond the range of closely related kin, matings may still occur between distant kin. Nevertheless, any costs of breeding with a distant relative may be outweighed by the benefits of local dispersal and the immense fitness gains available from attaining a breeding position.  相似文献   

13.
Although relatedness between mates is of considerable evolutionary and ecological significance, the way in which the level of relatedness is determined by different behavioural processes remains largely unknown. We investigated the role of behaviour in predicting mate relatedness in great tits using genotypic markers and detailed observations. We studied how mate relatedness is influenced by natal dispersal, inbreeding/outbreeding avoidance after natal dispersal and a behaviour not previously considered that influences membership to social aggregations, namely family escorting behaviour by parents. Among locally born individuals, the level of mate relatedness decreased with natal dispersal distance for females, but not for males. In contrast, mate relatedness was negatively related to the extent of family movements for males, but not for females. However, family movements did not predict dispersal distance for either sex. Local recruits were more related to their mates than immigrants, but this was only significant for females. No evidence was found for inbreeding/outbreeding avoidance after dispersal. Our results suggest that, in highly mobile species, mating options are spatially and/or socially limited, and that parents influence mating options of their offspring before dispersal.  相似文献   

14.
I investigated the effect of male mate competition and inbreeding avoidance on natal dispersal of chipmunks by longitudinally monitoring known individuals from 1986 to 1990. Natal males exhibited greater absolute and effective dispersal distances but dispersed at the same proportion as natal females. Recruitment of juvenile males was negatively affected by density of resident males, but there was no evidence of local mate competition among male kin. Analysis of the spatial distribution of neighbors showed that natal males settled farther from their mothers than did their female siblings and farther than unrelated juvenile males. In addition, mothers apparently tolerated daughters as close neighbors and occasionally shared den sites with grandprogeny. Sexually mature males were never neighbors of their mothers and were never observed at maternal mating bouts. Males may disperse to improve reproductive opportunities by avoiding competition with resident males, and by increasing access to unrelated females. Maternal tolerance of daughters but not sons may result in the close affiliation between mothers and daughters, and indirectly contribute to dispersal of natal males. Hence male-biased dispersal could be a consequence of mate competition and maternal avoidance of incestuous matings. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Widespread evidence exists that when relatives live together, kinship plays a central role in shaping the evolution of social behaviour. Previous studies showed that female rhesus macaques (Macaca mulatta) recognize familiar maternal kin using vocal cues. Recognizing paternal kin might, however, be more difficult as rhesus females mate promiscuously during the possible conception period, most probably concealing paternity. Behavioural observations indicate that semi free-ranging female rhesus macaques prefer to associate with their paternal half-sisters in comparison to unrelated females within the same group, particularly when born within the same age cohort. However, the cues and mechanism/s used in paternal kin discrimination remain under debate. Here, we investigated whether female rhesus macaques use the acoustic modality to discriminate between paternal half-sisters and non-kin, and tested familiarity and phenotype matching as the underlying mechanisms. We found that test females responded more often to calls of paternal half-sisters compared with calls of unrelated females, and that this discrimination ability was independent of the level of familiarity between callers and test females, which provides, to our knowledge, the first evidence for acoustic phenotype matching. Our study strengthens the evidence that female rhesus macaques can recognize their paternal kin, and that vocalizations are used as a cue.  相似文献   

16.
Characterizing animal dispersal patterns and the rational behind individuals’ transfer choices is a long‐standing question of interest in evolutionary biology. In wild western gorillas (Gorilla gorilla), a one‐male polygynous species, previous genetic findings suggested that, when dispersing, females might favor groups with female kin to promote cooperation, resulting in higher‐than‐expected within‐group female relatedness. The extent of male dispersal remains unclear with studies showing conflicting results. To investigate male and female dispersal patterns and extragroup paternity, we analyzed long‐term field observations, including female spatial proximity data, together with genetic data (10 autosomal microsatellites) on individuals from a unique set of four habituated western gorilla groups, and four additional extragroup males (49 individuals in total). The majority of offspring (25 of 27) were sired by the group male. For two offspring, evidence for extragroup paternity was found. Contrarily to previous findings, adult females were not significantly more related within groups than across groups. Consistently, adult female relatedness within groups did not correlate with their spatial proximity inferred from behavioral data. Adult females were similarly related to adult males from their group than from other groups. Using R ST statistics, we found significant genetic structure and a pattern of isolation by distance, indicating limited dispersal in this species. Comparing relatedness among females and among males revealed that males disperse farer than females, as expected in a polygamous species. Our study on habituated western gorillas shed light on the dispersal dynamics and reproductive behavior of this polygynous species and challenge some of the previous results based on unhabituated groups.  相似文献   

17.
We investigated the genetic structure and kinship patterns of black howler monkeys (Alouatta pigra) at Palenque National Park, Mexico. Fecal samples from 49 individuals residing in eight social groups were successfully genotyped for 19 polymorphic microsatellite markers known to be variable in other ateline primates. Overall, genetic diversity was low (Ho = 0.588) with an average of 4.2 alleles per loci (range = 2–8). We found that intergroup genetic variation among adults was relatively high (mean between‐group FST = 0.119), largely due to the genetic divergence of one study group from the others. Intragroup kinship patterns showed that in most social groups, either adult males, adult females, or individuals of both sexes resided with same‐sexed adult kin, suggesting that some black howler males and females may not disperse from their natal group or may disperse with related individuals. Of the six sampled immigrant males, two males joined established groups by themselves, and four males formed two pairs that each took over the social group they joined after evicting the resident males. Males in both these coalitions were genetically closely related, while the two solitary immigrants were not closely related to any of the resident males present in the group they joined. Am. J. Primatol. 74:948‐957, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Multimale–multifemale primate groups are ideal models to study the impact of kinship on the evolution of sociality. Indeed, the frequent combination of female philopatry and male reproductive skew produces social systems where both maternal and paternal kin are co‐resident. Several primates are known to bias their behavior toward both maternal and paternal kin. Moreover, allocation of affiliation toward paternal kin has been shown to depend on the availability in maternal kin: Female baboons invest more in paternal kin after the loss of preferred maternal kin. Here, we examined how affiliation co‐varies across kin classes in juvenile mandrills (Mandrillus sphinx), an Old World primate living in a multimale–multifemale society. While affiliation levels observed with the mother and with maternal half‐sibs co‐varied positively, especially in young females, we found that levels of affiliation among paternal half‐sibs correlated negatively with levels of affiliation among individuals from the same matriline (distant kin), possibly as a result of kin availability. In addition, in social species, social bonds between individuals have been linked to differentiated fitness consequences: More socially integrated individuals generally enjoy higher fitness. We therefore also tested whether affiliation during early life impacts fitness. We showed that the global amount of affiliation during juvenescence translated into possible reproductive benefits: Females who were more socially integrated gave birth on average a year before females that were less socially integrated. However, age at first reproduction was not predicted by the amount of affiliation exchanged with any particular kin class. These results add to the growing body of evidence demonstrating differential investment in bonding and possible social adjustments among different kin categories and emphasizing once more the adaptive value of sociality.  相似文献   

19.
1. Sex allocation theory predicts that where dispersal is sex biased, the fitness consequences of producing male or female offspring are mediated by resource availability and maternal competitive ability. Females in poorer condition are expected to favour dispersing offspring to minimize resource competition with kin. Environmental heterogeneity may drive spatial variation in sex allocation through resource competition-related benefits to females and territory quality benefits to dispersing or philopatric offspring. 2. Here, we demonstrate that microhabitat heterogeneity can drive extremely fine-scale spatial heterogeneity in offspring sex allocation. Female bobucks (Trichosurus cunninghami) in temperate rainforest were more likely to produce male offspring than those in surrounding Eucalyptus forest. 3. A maternal physiological effect was identified, in that females of lower body mass were more likely to produce male offspring. This finding is consistent with resource competition predictions, in that smaller females are expected to have poorer competitive ability. 4. Genetic spatial autocorrelation analysis identified males as the more dispersing sex. Furthermore, overproduction of males by mothers in the rainforest habitat was geographically concordant with reduced philopatry, as inferred from spatial genetic analysis. This provides empirical validation of dispersal-related explanations of offspring sex allocation: that production of offspring of the dispersing sex minimizes the potential for resource competition with kin. 5. Spatial variation in dispersal via sex allocation responses to environmental heterogeneity can potentially contribute to spatial patterns in population dynamics.  相似文献   

20.
Evidence shows that social cooperation among kin may evolve even in birds with extensive dispersal. In such cases, maintaining kinship during dispersal is essential to the subsequent expression of kin cooperation. This hypothesis has not been examined for most bird species. We addressed it in the ground tit (Parus humilis), a passerine where kin frequently interact in terms of cooperative polygamy and extra‐pair mating despite fast annual turnover of the breeding population. Pedigree and genotype data showed that while groups varied in composition throughout the non‐breeding season due to continual individual emigration and immigration, they always contained kin coalitions consisting of either local or immigrant individuals of different age and sexes. The first‐order kin coalitions, according to the information from local individuals, stemmed from single‐family lineages (siblings and their parents), and the lower‐order ones from neighbouring, related family lineages that merged after fledging. It was probable that immigrants had formed kin coalitions in similar ways before dispersing. Groups broke up in the breeding season. Pairing between unrelated individuals from different coalitions within a group was more likely, whereas related individuals from the same coalition tended to nest near each other. The resulting fine‐scale population genetic structure is expected to facilitate breeding interactions among kin. Our findings give clues to understanding the evolution of social cooperation in relation to dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号