首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two different pyrene derivatives, namely 12-(1-pyrene)dodecanoic acid (P12-FA) and N-(12-(1-pyrene)dodecanoyl)-galactosylsphingosine I3-sulfate (P12-CS) have been used to follow lipid peroxidation both in model and natural membranes. The malondialdehyde (MDA) production in small unilamellar vesicles of dipalmitoylphosphatidylcholine/arachidonic acid (80:20, molar ratio), symmetrically labelled with both probes determined a progressive decrease of pyrene fluorescence due to an involvement of pyrene in the peroxidative reaction. Nervous membranes are particularly sensitive to lipid oxidation which differentially acts on the two layers of the membrane determining a greater rigidity of the exofacial one. Thus, we consider the possibility to asymmetrically introduce the pyrene ring, as P12-FA or P12-CS, in synaptosomes for monitoring lipid peroxidation in each layer of the membrane. The amount of the two probes incorporated in the membrane was 20 +/- 3 and 10 +/- 2 nmol/mg of protein for P12-FA and P12-CS, respectively. P12-FA was symmetrically distributed in the two layers, whereas 95% of P12-CS was incorporated in the exofacial layer of the membrane as determined by TNBS measurements. The decrease in fluorescence of synaptosome associated pyrene was, in the early stages of lipid peroxidation, greater for P12-CS than for P12-FA labelled membranes, indicating a greater susceptibility of the exofacial layer to iron-induced peroxidation.  相似文献   

2.
The rff genes of Salmonella typhimurium include structural genes for enzymes involved in the conversion of UDP N-acetyl-D-glucosamine (UDP-GlcNAc) to UDP N-acetyl-D-mannosaminuronic acid (UDP-ManNAcA), the donor of ManNAcA residues in enterobacterial common antigen (ECA) synthesis. An rff mutation (rff-726) of Escherichia coli has been described (U. Meier and H. Mayer, J. Bacteriol. 163:756-762, 1985) that abolished ECA synthesis but which did not affect the synthesis of UDP-ManNAcA or any other components of ECA. The nature of the enzymatic defect resulting from the rff-726 lesion was investigated in the present study. The in vitro synthesis of GlcNAc-pyrophosphorylundecaprenol (lipid I), an early intermediate in ECA synthesis, was demonstrated by using membranes prepared from a mutant of E. coli possessing the rff-726 lesion. However, in vitro synthesis of the next lipid-linked intermediate in the biosynthetic sequence, ManNAcA-GlcNAc-pyrophosphorylundecaprenol (lipid II), was severely impaired. Transduction of wild-type rff genes into the mutant restored the ability to synthesize both lipid II and ECA as determined by in vitro assay and Western blot (immunoblot) analyses done with anti-ECA monoclonal antibody, respectively. Our results are consistent with the conclusion that the rff-726 mutation is located in the structural gene for the transferase that catalyzes the transfer of ManNAcA from UDP-ManNAcA to lipid I.  相似文献   

3.
D-Galactan I is an O-antigenic polymer with the repeat unit structure [-->3)-beta-D-Galf-(1-->3)-alpha-D-Galp-(1-->], that is found in the lipopolysaccharide of Klebsiella pneumoniae O1 and other gram-negative bacteria. A genetic locus containing six genes is responsible for the synthesis and assembly of D-galactan I via an ATP-binding cassette (ABC) transporter-dependent pathway. The galactosyltransferase activities that are required for the processive polymerization of D-galactan I were identified by using in vitro reactions. The activities were determined with endogenous lipid acceptors in membrane preparations from Escherichia coli K-12 expressing individual enzymes (or combinations of enzymes) or in membranes reconstituted with specific lipid acceptors. The D-galactan I polymer is built on a lipid acceptor, undecaprenyl pyrophosphoryl-GlcpNAc, a product of the WecA enzyme that participates in the biosynthesis of enterobacterial common antigen and O-antigenic polysaccharide (O-PS) biosynthesis pathways. This intermediate is directed into D-galactan I biosynthesis by the bifunctional wbbO gene product, which sequentially adds one Galp and one Galf residue from the corresponding UDP-sugars to form a lipid-linked trisaccharide. The two galactosyltransferase activities of WbbO are separable by limiting the UDP-Galf precursor. Galactosyltransferase activity in membranes reconstituted with exogenous lipid-linked trisaccharide acceptor and the known structure of D-galactan I indicate that WbbM catalyzes the subsequent transfer of a single Galp residue to form a lipid-linked tetrasaccharide. Chain extension of the D-galactan I polymer requires WbbM for Galp transferase, together with Galf transferase activity provided by WbbO. Comparison of the biosynthetic pathways for D-galactan I and the polymannose E. coli O9a antigen reveals some interesting features that may reflect a common theme in ABC transporter-dependent O-PS assembly systems.  相似文献   

4.
Bacterial cell growth necessitates synthesis of peptidoglycan. Assembly of this major constituent of the bacterial cell wall is a multistep process starting in the cytoplasm and ending in the exterior cell surface. The intracellular part of the pathway results in the production of the membrane-anchored cell wall precursor, Lipid II. After synthesis this lipid intermediate is translocated across the cell membrane. The translocation (flipping) step of Lipid II was demonstrated to require a specific protein (flippase). Here, we show that the integral membrane protein FtsW, an essential protein of the bacterial division machinery, is a transporter of the lipid-linked peptidoglycan precursors across the cytoplasmic membrane. Using Escherichia coli membrane vesicles we found that transport of Lipid II requires the presence of FtsW, and purified FtsW induced the transbilayer movement of Lipid II in model membranes. This study provides the first biochemical evidence for the involvement of an essential protein in the transport of lipid-linked cell wall precursors across biogenic membranes.  相似文献   

5.
The heteropolysaccharide chains of enterobacterial common antigen (ECA) are made up of linear trisaccharide repeat units with the structure----3)-alpha-D-Fuc4NAc-(1----4)- beta-D-ManNAcA-(1----4)-alpha-D-GlcNAc-(1----, where Fuc4NAc is 4-acetamido-4,6-dideoxy-D-galactose, ManNAcA is N-acetyl-D-mannosaminuronic acid, and GlcNAc is N-acetyl-D-glucosamine. The assembly of these chains involves lipid-linked intermediates, and both GlcNAc-pyrophosphorylundecaprenol (lipid I) and ManNAcA-GlcNAc-pyrophosphorylundecaprenol (lipid II) are intermediates in ECA biosynthesis. In this study we demonstrated that lipid II serves as the acceptor of Fuc4NAc residues in the assembly of the trisaccharide repeat unit of ECA chains. Incubation of Escherichia coli membranes with UDP-GlcNAc, UDP-[14C]ManNAcA, and TDP-[3H]Fuc4NAc resulted in the synthesis of a radioactive glycolipid (lipid III) that contained both [14C]ManNAcA and [3H]Fuc4NAc. The oligosaccharide moiety of lipid III was identified as a trisaccharide by gel-permeation chromatography, and the in vitro synthesis of lipid III was dependent on prior synthesis of lipids I and II. Accordingly, the incorporation of [3H]Fuc4NAc into lipid III from the donor TDP-[3H]Fuc4NAc was dependent on the presence of both UDP-GlcNAc and UDP-ManNAcA in the reaction mixtures. In addition, the in vitro synthesis of lipid III was abolished by tunicamycin. Direct conversion of lipid II to lipid III was demonstrated in two-stage reactions in which membranes were initially incubated with UDP-GlcNAc and UDP-[14C]ManNAcA to allow the synthesis of radioactive lipid II. Subsequent addition of TDP-Fuc4Nac to the washed membranes resulted in almost complete conversion of radioactive lipid II to lipid III. The in vitro synthesis of lipid III was also accompanied by the apparent utilization of this lipid intermediate for the assembly of ECA heteropolysaccharide chains. Incubation of membranes with UDP-[3H]GlcNAc, UDP-ManNAcA, and TDP-Fuc4NAc resulted in the apparent incorporation of isotope into ECA polymers, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. In addition, the in vitro incorporation of [3H]Fuc4NAc into ECA heteropolysaccharide chains was demonstrated with ether-treated cells that were prepared from delta rfbA mutants of Salmonella typhimurium. These mutants are defective in the synthesis of TDP-Fuc4NAc; as a consequence, they are also defective in the synthesis of lipid III and they accumulate lipid II. Accordingly, incubation of ether-permeabilized cells of delta rfbA mutants with TDP-[3h]Fuc4NAc resulted in the incorporation of isotope into both lipid III and ECA heteropolysaccharide chains.  相似文献   

6.
A convenient and reliable method has been established that allows a quantitative determination of m-diamino[3H]pimelic acid-labelled murein precursors in 1 ml culture samples of Escherichia coli. Prior to separation by reversed-phase high-pressure liquid chromatography the lipid-linked intermediates were hydrolysed to release the muropeptides. The accuracy for the measurement of UDP-N-acetylmuramylpentapeptide (UDP-MurNAc-pentapeptide) was +/- 1.9% (SD), for undecaprenyl-P-P-MurNAc-pentapeptide (lipid I) +/- 10% (SD) and for undecaprenyl-P-P-(GlcNAc-beta 1----4)MurNAc-pentapeptide (lipid II) +/- 5% (SD). The ratio of UDP-MurNAc-pentapeptide:lipid I:lipid II was about 300:1:3 for E. coli MC4100. The relative cellular concentrations of all three precursor molecules were found not to vary throughout the cell cycle. It is concluded that elongation and division of the murein sacculus is not controlled by oscillations in the concentrations of these late murein precursors.  相似文献   

7.
Biosynthesis of pentosyl lipids by pea membranes.   总被引:3,自引:1,他引:2  
Pea membranes were incubated with UDP-[14C]xylose or UDP-[14C]arabinose and sequentially extracted with chloroform/methanol/water (10:10:3, by vol.) and sodium dodecyl sulphate (2%, w/v). An active epimerase in the membranes rapidly interconverted the two pentosyl nucleotides. Chromatographic analysis of the lipid extract revealed that both substrates gave rise to xylose- and arabinose-containing neutral lipids, xylolipid with properties similar to a polyisoprenol monophosphoryl derivative, and highly charged lipid-linked arabinosyl oligosaccharide. When UDP-[14C]pentose or the extracted lipid-linked [14C]arabinosyl oligosaccharide were used as substrates, their 14C was also incorporating into sodium dodecyl sulphate-soluble and -insoluble fractions as major end products. Polyacrylamide-gel electrophoresis of sodium dodecyl sulphate-soluble products indicated the formation of mobile components with Mr values between 40 000 and 200 000 (Sepharose CL-6B). The lipid-linked [14C]arabinosyl oligosaccharide possessed properties comparable with those of unsaturated polyisoprenyl pyrophosphoryl derivatives. It was hydrolysed by dilute acid to a charged product (apparent Mr 2300) that could be fractionated in alkali. It was degraded to shorter labelled oligosaccharides by slightly more concentrated acid and eventually to [14C]arabinose as the only labelled component. Susceptibility to acid hydrolysis, and methylation analysis, indicated that the oligosaccharide contained approximately seven sequential alpha-1,5-linked arabinofuranosyl units at the non-reducing end. Several acidic residues appear to be interposed between the terminal arabinosyl units and the charged lipid.  相似文献   

8.
We have investigated the effect of bulk viscosity on lipid translational diffusion using the excimer formation technique. In contrast to a study by Vaz et al. (1987), performed with the fluorescence recovery after photobleaching technique, we observed only a minor decrease of less than a factor of two for pyrene labelled phosphatidylcholine in glycerinated phosphatidylcholine bilayer membranes compared to an aqueous dispersion. Even the diffusion of pyrene labelled gangliosides with an oligosaccharide head-group that protrudes from the membrane surface is not strongly restricted by the increased bulk viscosity. We conclude that the viscosity of the fluid bounding the lipid bilayers is of minor importance for the diffusion of membrane lipids.Abbreviations DPPC 1-2 dipalmitoyl-sn-glycero-3-phosphocholine - DSPC 1-2 distearoyl-sn-glycero-3-phosphocholine - PyPC 1-acyl-2-[10(-1-pyrene)decanoyl]-sn-glycero-3-phosphocholine - PyGM1 N-12-(1-pyrene)dodecanoyl-lyso GM1 - PyGM2 N-12-(1-pyrene)dodecanoyl-lyso GM2 - PyGM3 N-12-(1-pyrene) dodecanoyl-lyso GM3 - IM fluorescence intensity of the monomeric pyrene probe - ID fluorescence intensity of the excimer  相似文献   

9.
1. The incorporation of d-[1-(14)C]mannose, d-[2-(3)H]mannose and N-acetyl-d-[1-(14)C]-glucosamine into glycoproteins and lipid-linked intermediates of mammary explants obtained from lactating rabbits was studied. The amount of radioactivity incorporated into lipid-linked intermediates was very low compared with the incorporation into protein. Most of the radioactivity incorporated into the chloroform/methanol-soluble fraction was present as neutral lipid. Radioactivity from d-[2-(3)H]mannose was incorporated mainly into the fatty acid moiety, whereas radioactivity from d-[1-(14)C]mannose and N-acetyl-d-[1-(14)C]glucosamine was present in the glycerol moiety of triacylglycerol. 2. The labelled lipid-linked intermediate that was soluble in chloroform/methanol/water (10:10:3, by vol.) was partially characterized and was found to exhibit properties characteristic of an oligosaccharide linked to lipid via a pyrophosphate bridge. It migrated largely as a single zone of radioactivity on t.l.c. and was eluted from a column of DEAE-cellulose acetate as a single peak by 50mm-ammonium acetate. 3. The oligosaccharide moiety was released from the lipid by mild acid hydrolysis. The size of the oligosaccharide was estimated by paper chromatography to be 10 or 11 monosaccharide units. 4. d-[1-(14)C]Mannose was incorporated largely into glycopeptides with molecular weights in the range 40000-80000, as determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. Label from N-acetyl-d-[1-(14)C]glucosamine was incorporated into a glycopeptide with an electrophoretic mobility identical with that of rabbit casein (mol.wt. 32000) as well as into glycopeptides of higher molecular weight. 5. Approx. 50% of the total radioactivity in the protein labelled from N-acetyl-d-[1-(14)C]glucosamine was present as galactosamine, a component of the carbohydrate portion of rabbit casein. No labelled galactosamine was present in the lipid-linked oligosaccharide labelled from N-acetyl-d-[1-(14)C]glucosamine. It thus appears that the lipid-linked oligosaccharide is not involved in the glycosylation of casein.  相似文献   

10.
An in vitro system was developed to study the biosynthesis of enterobacterial common antigen (ECA). Membranes of Escherichia coli were found to possess an enzyme activity that catalyzes the transfer of UDP-N-acetyl-acetylglucosamine-1-phosphate from UDP-N-acetyl-glucosamine (UDP-GlcNAc) to an endogenous lipid acceptor according to the reaction UDP-GlcNAc + P-lipid----GlcNAc-PP-lipid + UMP. The lipid-linked product was tentatively identified as GlcNAc-pyrophosphorylundecaprenol (lipid I) based on a comparison of its chemical and chromatographic properties with those of authentic GlcNAc-pyrophosphorylundecaprenol. The enzyme was dependent on the presence of Mg2+ for activity, and the reaction catalyzed by the enzyme was totally inhibited by the antibiotic tunicamycin in both the forward and reverse directions. Incubation of membranes with both UDP-N-acetylmannosaminuronic acid (UDP-ManNAcA) and UDP-GlcNAc resulted in the conversion of lipid I to a more polar compound, lipid II. The synthesis of lipid II was dependent on prior synthesis of lipid I. Characterization of the saccharide moiety of lipid II resulted in the identification of this compound as ManNAcA-GlcNAc-pyrophosphorylundecaprenol.  相似文献   

11.
Escherichia coli cells were cultivated in a medium containing 1-pyrene butanoic acid, a fluorescent probe. Total lipids were extracted from the cells, and the extract was separated by thin-layer chromatography. The fluorescent fractions were examined using spectrofluorimetry. The starting 1-pyrene butanoic acid was shown to be biosynthetically incorporated into the bacterial lipid. Four fluorescent fractions appeared as a result; the fractions were derivatives of this compound modified in the chromophore and the fatty acid chain. The results indicate that the formation of 1-pyrene butanoic acid fluorescent metabolites can be used for studying the oxidation-reduction systems of the bacterium.  相似文献   

12.
Translocation of lipid-linked oligosaccharide (LLO) intermediates across membranes is an essential but poorly understood process in eukaryotic and bacterial glycosylation pathways. Membrane proteins defined as translocases or flippases are implicated to mediate the translocation reaction. The membrane protein Wzx has been proposed to mediate the translocation across the plasma membrane of lipopolysaccharide (LPS) O antigen subunits, which are assembled on an undecaprenyl pyrophosphate lipid carrier. Similarly, PglK (formerly WlaB) is a Campylobacter jejuni-encoded ABC-type transporter proposed to mediate the translocation of the undecaprenylpyrophosphate-linked heptasaccharide intermediate involved in the recently identified bacterial N-linked protein glycosylation pathway. A combination of genetic and carbohydrate structural analyses defined and characterized flippase activities in the C. jejuni N-linked protein glycosylation and the Escherichia coli LPS O antigen biosynthesis. PglK displayed relaxed substrate specificity with respect to the oligosaccharide structure of the LLO intermediate and complemented a wzx deficiency in E. coli O-antigen biosynthesis. Our experiments provide strong genetic evidence that LLO translocation across membranes can be catalyzed by two distinct proteins that do not share any sequence similarity.  相似文献   

13.
1. Microsomal fractions of lactating rabbit mammary gland incubated with UDP-glucose formed lipid-linked mono- and oligo-saccharides. The lipid-linked monosaccharide had chromatographic properties similar to those of dolichol phosphate mannose and yielded glucose on acid hydrolysis. 2. Incubation of the microsomal fraction with GDP-[U14C]-mannose yielded an oligosaccharide lipid of approximately seven monosaccharide units. Further incubation with UDP-glucose increased the size of the oligosaccharide by approximately two units. 3. Explants of lactating rabbit mammary gland incorporated [U-14C]glucose into both lipid-linked mono- and oligo-saccharides. The oligosaccharide lipid was of approx. 11 monosaccharide units. 4. Considerable redistribution of radioactive label occurred in the explant system, and radioactively labelled glucosamine and mannose, as well as glucose, were detected on acid hydrolysis of the oligosaccharide lipid. 5. Glucose was also detected in the acid hydrolysate of explant proteins. Radioactive glucosamine, galactosamine, galactose and mannose were also found in this fraction.  相似文献   

14.
We describe enzymatic transglycosylations between an appropriate glycosyl donor and galactosyl (or glucosyl)-serine and -peptide conjugates to obtain diglycosyl-serine or -peptide derivatives. The reactions are catalyzed by β-galactosidase (from E. coli or from Aspergillus oryzae) and β-glucosidase (from Almonds). The enzymatic reactions give, preferentially, β(1 å6) linked diglycosyl-serine (or -peptide) conjugates. However, in the case of the digalactosyl derivatives, β(1 å3) linkages are mainly observed. By changing the source of the enzyme (E. coli or Aspergillus oryzae) the regioselectivity can be reversed for these digalactosyl derivatives. Deprotection of the aminoacid of the diglycosyl-peptides under mild conditions is also described.  相似文献   

15.
To follow microviscosity changes in membranes associated with fibrinogen binding to human platelets, specific fluorescent probes were used and their fluorescence anisotropy was analysed. The degree of fluorescence anisotropy of diphenylhexatriene, anilinonaphthalene sulfonate (ANS) and fluorescamine increased significantly when fibrinogen reacted with its membrane receptors. Fluorescence polarization analyses showed that fibrinogen binding to platelet membranes is accompanied by an increase in the membrane lipid rigidity. On the other hand, changes in the fluorescence anisotropy of membrane tryptophans and N-(3-pyrene)maleimide suggest augmented mobility of the membrane proteins. The binding of fibrinogen to the membrane receptors is not accompanied by any change in the fluorescence intensity of ANS attached to the membranes. This may suggest that covering of platelets with fibrinogen molecules does not influence the surface membrane charge.  相似文献   

16.
Using a fluorogenic thiol reagent, N-(1-pyrene)maleimide (NPM), we have examined of lipid peroxidation on the microenvironment around SH groups of the membrane proteins in porcine intestinal brush-border membrane vesicles. The lipid peroxidation of the membranes was performed with various concentrations of t-butylhydroperoxide (t-BuOOH) in the presence of 100 microM ascorbic acid and 10 microM Fe2+. Treatment of NPM-labeled membranes with these oxidizing agents resulted in a decrease of the fluorescence lifetime, suggesting modification of the environmental properties around the bound dye. Measurement of the steady-state fluorescence anisotropy of the labeled membranes indicated restriction of the motion of the bound dye by the lipid peroxidation membranes. This interpretation was further supported by an elevation of the transition temperature of the anisotropy, a decrease in the quenching rate constant of the fluorescence with acrylamide and a decrease in the SH reactivity of the membrane proteins for NPM by lipid peroxidation. Based on these results, the possibility of conformation changes in the vicinity of SH groups in the membrane proteins associated with lipid peroxidation has been discussed.  相似文献   

17.
The effects of freezing of microsomes in liquid nitrogen and those of storage of microsomal suspensions at 2-4 degrees C and -3 - -5 degrees C for 24 hrs, on the enzymatic activities and hydrophobicity of membranes were studied. The hydrophobicity was determined by fluorescence of bound 1,8-anilino-naphthalene sulfonate. Rapid freezing of the microsomal suspension in liquid nitrogen followed by rapid warming did not change the hydrophobicity of the membranes, the rate of enzymatic lipid peroxidation, the level of cytochrome P-450 and the activity of NADH- and NADPH-cytochrome c reductase. A considerable decrease in the rate of enzymatic lipid peroxidation and membrane hydrophobicity was observed in the microsomes stored for 24 hrs at 2-4 degrees C. The 24-hr storage at -3 - -5 degrees C with subsequent thawing resulted in a rapid aggregation of the microsomes.  相似文献   

18.
The effects of the guanosine diphosphate esters of 4-deoxy-4-fluoro-D-mannose (GDP-4FMan) and 4-deoxy-D-mannose (GDP-4dMan) on reactions of the dolichol pathway in chick-embryo cell microsomal membranes were investigated by studies with chick-embryo cell microsomal membranes in vitro and in baby-hamster kidney (BHK) cells in vivo. Each nucleotide sugar analogue inhibited lipid-linked oligosaccharide biosynthesis in a concentration-dependent manner. GDP-4FMan blocked in vitro the addition of mannose to Dol-PP-(GlcNAc)2Man from GDP-Man (where Dol represents dolichol), but did not interfere with the formation of Dol-P-Man, Dol-P-Glc and Dol-PP-(GlcNAc)2. Although GDP-4FMan and Dol-P-4FMan were identified as metabolites of 4FMan in BHK cells labelled with [1-14C]4FMan, GDP-4FMan was a very poor substrate for GDP-Man:Dol-P mannosyltransferase and Dol-P-4FMan could only be synthesized in vitro if the chick-embryo cell membranes were primed with Dol-P. It therefore appears that the inhibition of lipid-linked oligosaccharide formation in BHK cells treated with 4FMan [Grier & Rasmussen (1984) J. Biol. Chem. 259, 1027-1030] is due primarily to a blockage in the formation of Dol-PP-(GlcNAc)2Man2 by GDP-4FMan. In contrast, GDP-4dMan was a substrate for those mannosyltransferases that catalyse the transfer of the first five mannose residues to Dol-PP-(GlcNAc)2. In addition, GDP-4dMan was a substrate for GDP-Man:Dol-P mannosyltransferase, which catalysed the formation of Dol-P-4dMan. As a consequence of this, the formation of Dol-P-Man, Dol-P-Glc and Dol-PP-(GlcNAc)2 may be inhibited through competition for Dol-P. In BHK cells treated with 10 mM-4dMan, Dol-PP-(GlcNAc)2Man9 was the major lipid-linked oligosaccharide detected. Nearly normal extents of protein glycosylation were observed, but very little processing to complex oligosaccharides occurred, and the high-mannose structures were smaller than in untreated cells.  相似文献   

19.
Lesion selectivity in blockage of lambda exonuclease by DNA damage.   总被引:4,自引:4,他引:0       下载免费PDF全文
Various kinds of DNA damage block the 3' to 5' exonuclease action of both E. coli exonuclease III and T4 DNA polymerase. This study shows that a variety of DNA damage likewise inhibits DNA digestion by lambda exonuclease, a 5' to 3' exonuclease. The processive degradation of DNA by the enzyme is blocked if the substrate DNA is treated with ultraviolet irradiation, anthramycin, distamycin, or benzo[a]-pyrene diol epoxide. Furthermore, as with the 3' to 5' exonucleases, the enzyme stops at discrete sites which are different for different DNA damaging agents. On the other hand, digestion of treated DNA by lambda exonuclease is only transiently inhibited at guanine residues alkylated with the acridine mustard ICR-170. The enzyme does not bypass benzo[a]-pyrene diol epoxide or anthramycin lesions even after extensive incubation. While both benzo[a]-pyrene diol epoxide and ICR-170 alkylate the guanine N-7 position, only benzo[a]-pyrene diol epoxide also reacts with the guanine N-2 position in the minor groove of DNA. Anthramycin and distamycin bind exclusively to sites in the minor groove of DNA. Thus lambda exonuclease may be particularly sensitive to obstructions in the minor groove of DNA; alternatively, the enzyme may be blocked by some local helix distortion caused by these adducts, but not by alkylation at guanine N-7 sites.  相似文献   

20.
Alterations in the membrane organization caused by fibrinogen binding to human blood platelets and their isolated membranes were analyzed by fluorescence and electron spin resonance measurements. The degree of fluorescent anisotropy of DPH, ANS and fluorescamine increased significantly when fibrinogen reacted with its membrane receptors. Both fluorescence and ESR analyses showed that fibrinogen binding to platelet membranes is accompanied by an increase of the membrane lipid rigidity. This effect seems to be indirect in nature and is mediated by altered membrane protein interactions. As it has been shown that an increased membrane lipid rigidity leads to a greater exposure of membrane proteins, including fibrinogen receptors, this might facilitate a formation of molecular linkages between neighboring platelets. On the other hand, changes of fluorescence anisotropy of membrane tryptophans and N-(3-pyrene) maleimide suggest the augmented mobility of the membrane proteins. Evidence is presented which indicated that the binding of fibrinogen to the membrane receptors is not accompanied by any changes in the fluorescence intensity of ANS attached to the membranes. It may suggest that the covering of platelets with fibrinogen does not influence the surface membrane charge. In contrast to fibrinogen, calcium ions caused an increase of the fluorescence intensity resulting from the more efficient binding of ANS to the platelet membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号