首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 9 rabbits the effect of intravenous administration of E. coli pyrogen 0.5 microgram/kg on the reaction of selective brain cooling was studied at ambient temperatures of 20, 30 and 40 degrees C. In the freely moving animals the temperatures of the brain, carotid artery and nuchal muscles were measured with an accuracy down to 0.05 degree C and the temperatures of the ear pinna and nasal mucosa were measured accurate to 0.5 degree C. The respiratory rate was measured as well. It was found that the spontaneous febrile reaction without the component of passive hyperthermia failed to cause selective brain cooling, even if its temperature reached higher values than in case of brain temperature rise caused only by high ambient temperature. On the other hand, when the high ambient temperature caused thermal panting, pyrogen administration at an ambient temperature of 30 degrees C could reduce panting, while at an ambient temperature of 40 degrees C intense panting initiated prior to the appearance of the febrile reaction and was associated with the fever and outlasted it.  相似文献   

2.
We used implanted miniature data loggers and fine thermistors to measure arterial blood and brain temperatures in four female pigs, to a resolution of 0.04 °C, every 5 min, for 4 weeks. Within that period, pigs were exposed on different days, and in random order, to a cold (5 °C) or hot (38 °C) environment. In the thermoneutral environment of the pigs' home pens, brain temperature was usually lower than blood temperature. Such selective brain cooling was absent for 2 days after surgery, during handling and transport stress, and on waking. The magnitude of selective brain cooling was greatest when pigs were sleeping and body temperatures were low, and was smallest, or even absent, during hyperthermia and natural fever. Our results showed that selective brain cooling was present in pigs, but there was no clear relationship between blood temperature and the magnitude of selective brain cooling. Instead, the degree of selective brain cooling in pigs was governed by non-thermal factors, especially those associated with high sympathetic nervous system activity. Our results further support the concept that selective brain cooling does not serve to protect the brain from thermal damage during heat stress. Accepted: 14 September 1999  相似文献   

3.
Adaptive heterothermy and selective brain cooling are regarded as important thermal adaptations of large arid-zone mammals. Adaptive heterothermy, a process which reduces evaporation by storing body heat, ought to be enhanced by ambient heat load and by water deficit, but most mammals studied fail to show at least one of those attributes. Selective brain cooling, the reduction of brain temperature below arterial blood temperature, is most evident in artiodactyls, which possess a carotid rete, and traditionally has been considered to protect the brain during hyperthermia. The development of miniature ambulatory data loggers for recording body temperature allows the temperatures of free-living wild mammals to be measured in their natural habitats. All the African ungulates studied so far, in their natural habitats, do not exhibit adaptive heterothermy. They have low-amplitude nychthemeral rhythms of temperature, with mean body temperature over the night exceeding that over the day. Those with carotid retes (black wildebeest, springbok, eland) employ selective brain cooling but zebra, without a rete, do not. None of the rete ungulates, however, seems to employ selective brain cooling to prevent the brain overheating during exertional hyperthermia. Rather, they use it at rest, under moderate heat load, we believe in order to switch body heat loss from evaporative to non-evaporative routes.  相似文献   

4.
Whole body hypothermia can be used to treat the injured brain (e.g. after hypoxic events). Side effects include hemodynamic instability, coagulopathy and infection. Because of these side effects it appears reasonable to cool the brain selectively (selective brain cooling, SBC) without changing the core temperature. A new animal model was used to demonstrate SBC from the pharynx and to examine effects of SBC on the duration of pharmacologically induced seizure activity. Sprague-Dawley rats (n=18, 12 successful experiments) were sedated and mechanically ventilated. Invasive blood pressure monitoring was instituted and blood gases were drawn to evaluate the arterial blood gas status. Electrical brain activity was recorded using a microneedle in the extracellular compartment of the rat brain cortex. Cooled water was circulated through a small tubing into and out of the pharynx of the animals. The cortical as well as the rectal temperature were recorded. After the injection of a single dose of bicuculline (1 mg/kg i.v.) per animal the duration of the induced seizure activity was measured and compared with the temperature prior to the induction of seizure activity. The cortical blood flow (CBF) was detected using intra tissue Doppler signals in the rat cortex in the same location as the EP-study. The influence of a brain temperature reduction between 36.5 degrees to 31.5 degrees C on the seizure duration was examined. There was a positive correlation between the seizure duration and the cortical temperature (r=0.64). Also the CBF was increased during seizure activity (p=0.02) and the increase correlated weakly with cortical temperature (r=0.18). The core temperature remained in the normothermic range (36.9+/-0.7 degrees C) Conclusion: The duration of induced seizures correlates with local brain temperature. In the future further studies should examine the efficiency of induced (selective) brain cooling to treat prolonged seizure activity.  相似文献   

5.
6.
7.
By cooling the hypothalamus during hyperthermia, selective brain cooling reduces the drive on evaporative heat loss effectors, in so doing saving body water. To investigate whether selective brain cooling was increased in dehydrated sheep, we measured brain and carotid arterial blood temperatures at 5-min intervals in nine female Dorper sheep (41 +/- 3 kg, means +/- SD). The animals, housed in a climatic chamber at 23 degrees C, were exposed for nine days to a cyclic protocol with daytime heat (40 degrees C for 6 h). Drinking water was removed on the 3rd day and returned 5 days later. After 4 days of water deprivation, sheep had lost 16 +/- 4% of body mass, and plasma osmolality had increased from 290 +/- 8 to 323 +/- 9 mmol/kg (P < 0.0001). Although carotid blood temperature increased during heat exposure to similar levels during euhydration and dehydration, selective brain cooling was significantly greater in dehydration (0.38 +/- 0.18 degrees C) than in euhydration (-0.05 +/- 0.14 degrees C, P = 0.0008). The threshold temperature for selective brain cooling was not significantly different during euhydration (39.27 degrees C) and dehydration (39.14 degrees C, P = 0.62). However, the mean slope of lines of regression of brain temperature on carotid blood temperature above the threshold was significantly lower in dehydrated animals (0.40 +/- 0.31) than in euhydrated animals (0.87 +/- 0.11, P = 0.003). Return of drinking water at 39 degrees C led to rapid cessation of selective brain cooling, and brain temperature exceeded carotid blood temperature throughout heat exposure on the following day. We conclude that for any given carotid blood temperature, dehydrated sheep exposed to heat exhibit selective brain cooling up to threefold greater than that when euhydrated.  相似文献   

8.
Recent experiments with specific aminopeptidase inhibitors in rats have strengthened earlier proposals that ANG III may be an important regulatory peptide in the brain. Central mechanisms regulating blood pressure, ingestive behaviors, and vasopressin release could be involved. Arguments in favor of a role for ANG III depend, in part, on the efficacy of ANG III as an agonist. These first studies in primates tested whether ANG III stimulates ingestive behaviors in baboons. Intracerebroventricular (ICV) infusions of ANG III were as potent as ANG II in stimulating water drinking and intake of NaCl solution. On the basis of this criterion and consistent with findings in rats, ANG III could be a main effector peptide in the regulation of ingestive behaviors in a primate.  相似文献   

9.
10.
11.
Specimens of human blood were exposed to 0, 4, 40, 100, and 200 Wkg-1 of 2.45 GHz microwave radiation for 20 minutes. The blood temperature was carefully controlled so that it rose from 37 to 40 degrees C. Cultured lymphocytes were examined for induced chromosomal damage but no effect in excess of background was observed.  相似文献   

12.
A three-dimensional mathematical model was developed to examine the transient and steady-state temperature distribution in the human brain during selective brain cooling (SBC) by unilateral intracarotid freezing-cold saline infusion. To determine the combined effect of hemodilution and hypothermia from the cold saline infusion, data from studies investigating the effect of these two parameters on cerebral blood flow (CBF) were pooled, and an analytic expression describing the combined effect of the two factors was derived. The Pennes bioheat equation used the thermal properties of the different cranial layers and the effect of cold saline infusion on CBF to propagate the evolution of brain temperature. A healthy brain and a brain with stroke (ischemic core and penumbra) were modeled. CBF and metabolic rate data were reduced to simulate the core and penumbra. Simulations using different saline flow rates were performed. The results suggested that a flow rate of 30 ml/min is sufficient to induce moderate hypothermia within 10 min in the ipsilateral hemisphere. The brain with stroke cooled to lower temperatures than the healthy brain, mainly because the stroke limited the total intracarotid blood flow. Gray matter cooled twice as fast as white matter. The continuously falling hematocrit was the main time-limiting factor, restricting the SBC to a maximum of 3 h. The study demonstrated that SBC by intracarotid saline infusion is feasible in humans and may be the fastest method of hypothermia induction.  相似文献   

13.
Vertucci CW 《Plant physiology》1989,90(4):1478-1485
The effect of cooling rate on seeds was studied by hydrating pea (Pisum sativum), soybean (Glycine max), and sunflower (Helianthus annuus) seeds to different levels and then cooling them to − 190°C at rates ranging from 1°C/minute to 700°C/minute. When seeds were moist enough to have freezable water (> 0.25 gram H2O/gram dry weight), rapid cooling rates were optimal for maintaining seed vigor. If the seeds were cooled while at intermediate moisture levels (0.12 to 0.20 gram H2O per gram dry weight), there appeared to be no effect of cooling rate on seedling vigor. When seeds were very dry (< 0.08 gram H2O per gram dry weight), cooling rate had no effect on pea, but rapid cooling rates had a marked detrimental effect on soybean and sunflower germination. Glass transitions, detected by differential scanning calorimetry, were observed at all moisture contents in sunflower and soybean cotyledons that were cooled rapidly. In pea, glasses were detectable when cotyledons with high moisture levels were cooled rapidly. The nature of the glasses changed with moisture content. It is suggested that, at high moisture contents, glasses were formed in the aqueous phase, as well as the lipid phase if tissues had high oil contents, and this had beneficial effects on the survival of seeds at low temperatures. At low moisture contents, glasses were observed to form in the lipid phase, and this was associated with detrimental effects on seed viability.  相似文献   

14.
Zhang XH  Zhu PH 《生理学报》1998,50(2):213-216
过去的工作表明,经12,13-二丁基佛波酯(PDBu,蛋白激酶C激动剂)作用的蛙骨骼肌纤维出现兴奋收缩去耦联。为了了解这种去耦联是否由去横小管引起,本工作研究了细胞内诱发的动作电位。在用渗透压法去横小管后,表明存在完整横小管的动作电位的后去极化逐渐消失。但是,从经1μmol/LPDBu作用12或24h肌纤维中记录到的动作电位依然存在后去极化。上述结果提示,暴露于PDBu的蛙骨骼肌纤维的横小管完整。因而,由PDBu引起的兴奋收缩去耦联的机制仍有待阐明。  相似文献   

15.
16.
A two-fold increase in acetylcholine, that can randomly be released by brain synaptosomes, is registered 60 min following whole-body X-irradiation of rats with a dose of 0.21 C/kg; depolarization of the synaptosome membranes by potassium chloride increases the release of acetylcholine the augmentation of the release in this case being lower than that in the control. The initial rate of spontaneous neuromediator release from synaptosomes grows by 80 per cent whereas after depolarization of synaptosome membranes by potassium chloride, by 15 per cent. There is a 2.5-fold increase in the maximum rate of a highly specific uptake of choline with Km value being constant. Acetylcholine content of gray substance of irradiated rat brain is invariable.  相似文献   

17.
18.
Finnish saunas are popular for alleviating psycho-emotional and physical stress. Regular visits to a sauna may promote three adaptive effects: a simulation of the training generally associated with sports activities, the building up of resistance to the effects of extreme exposures, and the regulation of autonomic functions. However, the effect that the sauna has on the physiological mechanisms of humans--particularly, the effect of contrast-cooling following thermal exposure--is still obscure. An example of contrast-cooling following thermal exposure is that caused by swimming after using a sauna; such contrast-cooling may be a risk factor for people with unstable blood pressure, and gradual cooling-off after using a sauna may be preferable. In this series, various autonomic functions under different heating and cooling treatment in a sauna were studied. The authors have concluded that the mode of exposures to heating and cooling under control of Heart Rate (HR) changes has, to a certain extent, a relaxing effect, and thus can be recommended for alleviating psycho-emotional stress.  相似文献   

19.
To investigate the role of the angularis oculi vein (AOV) in selective brain cooling (SBC), we measured brain and carotid blood temperatures in six adult female Dorper sheep. Halfway through the study, a section of the AOV, just caudal to its junction with the dorsal nasal vein, was extirpated on both sides. Before and after AOV surgery, the sheep were housed outdoors at 21-22°C and were exposed in a climatic chamber to daytime heat (40°C) and water deprivation for 5 days. In sheep outdoors, SBC was significantly lower after the AOV had been cut, with its 24-h mean reduced from 0.25 to 0.01°C (t(5) = 3.06, P = 0.03). Carotid blood temperature also was lower (by 0.28°C) at all times of day (t(5) = 3.68, P = 0.01), but the pattern of brain temperature was unchanged. The mean threshold temperature for SBC was not different before (38.85 ± 0.28°C) and after (38.85 ± 0.39°C) AOV surgery (t(5) =0.00, P = 1.00), but above the threshold, SBC magnitude was about twofold less after surgery. SBC after AOV surgery also was less during heat exposure and water deprivation. However, SBC increased progressively by the same magnitude (0.4°C) over the period of water deprivation, and return of drinking water led to rapid cessation of SBC in sheep before and after AOV surgery. We conclude that the AOV is not the only conduit for venous drainage contributing to SBC in sheep and that, contrary to widely held opinion, control of SBC does not involve changes in the vasomotor state of the AOV.  相似文献   

20.
Angus crossbred yearling steers (n = 168) were used to evaluate effects on performance and tympanic temperature (TT) of feeding additional potassium and sodium to steers exposed to excessive heat load (maximum daily ambient temperature exceeded 32°C for three consecutive days) during seasonal summer conditions. Steers were assigned one of four treatments: (1) control; (2) potassium supplemented (diet containing 2.10% KHCO3); (3) sodium supplemented (diet containing 1.10% NaCl); or (4) potassium and sodium supplemented (diet containing 2.10% KHCO3 and 1.10% NaCl). Overall, additional KHCO3 at the 2% level or NaCl at the 1% level did not improve performance or heat stress tolerance with these diet formulations. However, the addition of KHCO3 did enhance water intake. Independent of treatment effects, TT of cattle displaying high, moderate, or low levels of stress suggest that cattle that do not adequately cool down at night are prone to achieving greater body temperatures during a subsequent hot day. Cattle that are prone to get hot but can cool at night can keep average tympanic temperatures at or near those of cattle that tend to consistently maintain lower peak and mean body temperatures. In addition, during cooler and moderately hot periods, cattle change TT in a stair-step or incremental pattern, while under hot conditions, average TT of group-fed cattle moves in conjunction with ambient conditions, indicating that thermoregulatory mechanisms are at or near maximum physiological capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号