共查询到20条相似文献,搜索用时 15 毫秒
1.
Bodor C Nagy JP Végh B Németh A Jenei A MirzaHosseini S Sebe A Rosivall L 《American journal of physiology. Cell physiology》2012,302(1):C267-C276
Angiotensin II (ANG II), the major effector molecule of the renin-angiotensin system (RAS), is a powerful vasoactive mediator associated with hypertension and renal failure. In this study the permeability changes and its morphological attributes in endothelial cells of human umbilical vein (HUVECs) were studied considering the potential regulatory role of ANG II. The effects of ANG II were compared with those of vascular endothelial growth factor (VEGF). Permeability was determined by 40 kDa FITC-Dextran and electrical impedance measurements. Plasmalemmal vesicle-1 (PV-1) mRNA levels were measured by PCR. Endothelial cell surface was studied by atomic force microscopy (AFM), and caveolae were visualized by transmission electron microscopy (TEM) in HUVEC monolayers. ANG II (10(-7) M), similarly to VEGF (100 ng/ml), increased the endothelial permeability parallel with an increase in the number of cell surface openings and caveolae. AT1 and VEGF-R2 receptor blockers (candesartan and ZM-323881, respectively) blunted these effects. ANG II and VEGF increased the expression of PV-1, which could be blocked by candesartan or ZM-323881 pretreatments and by the p38 mitogem-activated protein (MAP) kinase inhibitor SB-203580. Additionally, SB-203580 blocked the increase in endothelial permeability and the number of surface openings and caveolae. In conclusion, we have demonstrated that ANG II plays a role in regulation of permeability and formation of cell surface openings through AT1 receptor and PV-1 protein synthesis in a p38 MAP kinase-dependent manner in endothelial cells. The surface openings that increase in parallel with permeability may represent transcellular channels, caveolae, or both. These morphological and permeability changes may be involved in (patho-) physiological effects of ANG II. 相似文献
2.
Yao F Sumners C O'Rourke ST Sun C 《American journal of physiology. Heart and circulatory physiology》2008,294(6):H2712-H2720
Increasing evidence indicates that both the angiotensin II (ANG II) and gamma-aminobutyric acid (GABA) systems play a very important role in the regulation of blood pressure (BP). However, there is little information concerning the interactions between these two systems in the nucleus tractus solitarii (NTS). In the present study, we examined the effects of ANG II on GABAA and GABAB receptor (GAR and GBR) expression in the NTS of Sprague-Dawley rats. The direct effect of ANG II on GBR expression was determined in neurons cultured from NTS. Treatment of neuronal cultures with ANG II (100 nM, 5 h) induced a twofold increase in GBR1 expression, as detected with real-time RT-PCR and Western blots, but had no effect on GBR2 or GAR expression. In electrophysiological experiments, perfusion of neuronal cultures with the GBR agonist baclofen decreased neuronal firing rate by 39% and 63% in neurons treated with either PBS (control) or ANG II, respectively, indicating that chronic ANG II treatment significantly enhanced the neuronal response to GBR activation. In contrast, ANG II had no significant effect on the inhibitory action of the GAR agonist muscimol. In whole animal studies, intracerebroventricular infusion of ANG II induced a sustained increase in mean BP and an elevation of GBR1 mRNA and protein levels in the NTS. These results indicate that ANG II stimulates GBR expression in NTS neurons, and this could contribute to the central nervous system actions of ANG II that result in dampening of baroreflexes and elevated BP in the central actions of ANG II. 相似文献
3.
The effects of angiotensin II (ANG II) and bilateral nephrectomy on monoamine oxidase (MAO) activity were studied in rat hypothalamus and medulla oblongata. ANG II increased MAO activity in both central nervous system (CNS) regions. The fall of circulating ANG II caused by 48 h bilateral nephrectomy decreased the activity of the enzyme in the mentioned areas. The results showed that ANG II stimulates catecholamine metabolism in the CNS. 相似文献
4.
Serazin V Dieudonné MN Morot M de Mazancourt P Giudicelli Y 《American journal of physiology. Endocrinology and metabolism》2004,286(3):E434-E438
The adipose renin-angiotensin system (RAS) has been assigned to participate in the control of adipose tissue development and in the pathogenesis of obesity-related hypertension. In adipose cells, the biological responses to beta-adrenergic stimulation are mediated by an increase in intracellular cAMP. Because cAMP is known to promote adipogenesis and because an association exists between body fat mass, hypertension, and increased sympathetic stimulation, we examined the influence of cAMP on angiotensinogen (ATG) expression and secretion in rat adipose tissue. Exposure of primary cultured differentiated preadipocytes to the cAMP analog 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) or cAMP-stimulating agents (forskolin and IBMX) results in a significant increase in ATG mRNA levels. In adipose tissue fragments, 8-BrcAMP also increases ATG mRNA levels and protein secretion, but not in the presence of the protein kinase A inhibitor H89. The addition of isoproterenol, known to stimulate the synthesis of intracellular cAMP via beta-adrenoreceptors, had the same stimulatory effect on ATG expression and secretion. These results indicate that cAMP in vitro upregulates ATG expression and secretion in rat adipose tissue via the protein kinase A-dependent pathway. Further studies are required to determine whether this regulatory pathway is activated in human obesity, where increased sympathetic tone is frequently observed, and to elucidate the importance of adipose ATG to the elevated blood pressure observed in this pathological state. 相似文献
5.
Recent studies from our laboratory indicate a primary central site of action of Angiotensin II (AII) to release ACTH. The present studies were designed to test whether AII is able to release ACTH in vivo in a similar fashion in intact, cannulated, freely moving Long-Evans (LE) or in vasopressin (AVP)-deficient, Brattleboro (DI) female rats. The in vivo response to AII was compared with that elicited by synthetic CRF. AII injected i.v. (0.4 or 2 micrograms/100 g BW) induced a significant, dose-related increase in plasma ACTH values 5 and 15 min after injection, in both LE and DI rats. CRF given to LE and DI rats at 0.4 micrograms/100 g BW elicited a larger increase in ACTH plasma values than a similar dose of AII, 5 or 15 min after the injection. Moreover, ACTH levels after CRF in DI rats were significantly greater than those obtained in LE controls. In vitro studies using dispersed anterior pituitary cells indicate that the response of cells from either LE or DI rats to AII or AVP (both at 10(-9) and 10(-8)M) was similar. Cells from DI donors were hyperresponsive to CRF (2 X 10(-11) and 10(-10)M) in terms of ACTH release when compared with the response of cells from LE rats. The present results suggest that the presence of AVP is not essential to mediate the central response to AII and that AII may act centrally to stimulate CRF release from the hypothalamus in vivo, which would then enhance ACTH output. The results in the DI rat indicate that the increased response to CRF may be an important compensatory mechanism involved in the regulation of adrenocortical function in the DI rat. 相似文献
6.
7.
8.
9.
Klett CP Granger JP 《American journal of physiology. Regulatory, integrative and comparative physiology》2001,281(5):R1437-R1441
Hepatic angiotensinogen secretion is controlled by a complex pattern of physiological or pathophysiological mediators. Because plasma concentrations of angiotensinogen are close to the Michaelis-Menten constant, it was hypothesized that changes in circulating angiotensinogen affect the formation rate of ANG I and ANG II and, therefore, blood pressure. To further test this hypothesis, we injected purified rat angiotensinogen intravenously in Sprague-Dawley rats via the femoral vein and measured mean arterial blood pressure after arterial catheterization. In controls, mean arterial pressure was 131 +/- 2 mmHg before and after the injection of vehicle (sterile saline). The injection of 0.8, 1.2, and 2.9 mg/kg angiotensinogen caused a dose-dependent increase in mean arterial blood pressure of 8 +/- 0.4, 19.3 +/- 2.1, and 32 +/- 2.4 mmHg, respectively. In contrast, the injection of a purified rabbit anti-rat angiotensinogen antibody (1.4 mg/kg) resulted in a significant decrease in mean arterial pressure (-33 +/- 3.2 mmHg). Plasma angiotensinogen increased to 769 +/- 32, 953 +/- 42, and 1,289 +/- 79 pmol/ml, respectively, after substrate and decreased by 361 +/- 28 pmol/ml after antibody administration. Alterations in plasma angiotensinogen correlated well with changes in plasma renin activity. In summary, variations in circulating angiotensinogen can result in changes in blood pressure. In contrast to renin, which is known as a tonic regulator for the generation of ANG I, angiotensinogen may be a factor rather important for long-term control of the basal activity of the renin-angiotensin system. 相似文献
10.
We investigated, in mesenteric arteries from hypertensive rats (SHR), the possible changes in neurogenic nitric oxide (NO) release produced by angiotensin II (AII), and the possible mechanisms involved in this process. In deendothelialized segments the NO synthase inhibitor N(G)-nitro-L-arginine (L-NAME, 10 microM) increased the contractions caused by electrical field stimulation (EFS, 200 mA, 0.3 ms, 1-16 Hz, for 30 s). AII (0.1 nM) enhanced the response to EFS, which was unmodified by the subsequent addition of L-NAME. The AII antagonist receptor saralasine (0.1 microM) prevented the effect of AII, and the subsequent addition of L-NAME restored the contractile response. SOD (25 u/ml) decreased the reponse to EFS and the subsequent addition of L-NAME increased this response. AII did not modify the decrease in EFS response induced by SOD, and the addition of L-NAME increased the response. None of these drugs altered the response to exogenous noradrenaline (NA) or basal tone except SOD, which increased the basal tone, an effect blocked by phentolamine (1 microM). In arteries pre-incubated with [3H]-NA, AII did not modify the tritium efflux evoked by EFS, which was diminished by SOD. AII did not alter basal tritium efflux while SOD significantly increased it. These results suggest that EFS of SHR mesenteric arteries releases neurogenic NO, the metabolism of which is increased in the presence of AII by the generation of superoxide anions. 相似文献
11.
Gabriely I Yang XM Cases JA Ma XH Rossetti L Barzilai N 《American journal of physiology. Regulatory, integrative and comparative physiology》2001,281(3):R795-R802
Elevated plasma angiotensinogen (AGT) levels have been demonstrated in insulin-resistant states such as obesity and type 2 diabetes mellitus (DM2), conditions that are directly correlated to hypertension. We examined whether hyperinsulinemia or hyperglycemia may modulate fat and liver AGT gene expression and whether obesity and insulin resistance are associated with abnormal AGT regulation. In addition, because the hexosamine biosynthetic pathway is considered to function as a biochemical sensor of intracellular nutrient availability, we hypothesized that activation of this pathway would acutely mediate in vivo the induction of AGT gene expression in fat and liver. We studied chronically catheterized lean (approximately 300 g) and obese (approximately 450 g) Sprague-Dawley rats in four clamp studies (n = 3/group), creating physiological hyperinsulinemia (approximately 60 microU/ml, by an insulin clamp), hyperglycemia (approximately 18 mM, by a pancreatic clamp using somatostatin to prevent endogenous insulin secretion), or euglycemia with glucosamine infusion (GlcN; 30 micromol. kg(-1). min(-1)) and equivalent saline infusions (as a control). Although insulin infusion suppressed AGT gene expression in fat and liver of lean rats, the obese rats demonstrated resistance to this effect of insulin. In contrast, hyperglycemia at basal insulin levels activated AGT gene expression in fat and liver by approximately threefold in both lean and obese rats (P < 0.001). Finally, GlcN infusion simulated the effects of hyperglycemia on fat and liver AGT gene expression (2-fold increase, P < 0.001). Our results support the hypothesis that physiological nutrient "pulses" may acutely induce AGT gene expression in both adipose tissue and liver through the activation of the hexosamine biosynthetic pathway. Resistance to the suppressive effect of insulin on AGT expression in obese rats may potentiate the effect of nutrients on AGT gene expression. We propose that increased AGT gene expression and possibly its production may provide another link between obesity/insulin resistance and hypertension. 相似文献
12.
Angiotensin II increases cytosolic calcium and stimulates catecholamine release in cultured bovine adrenomedullary cells 总被引:5,自引:0,他引:5
In bovine adrenomedullary cells in primary culture, angiotensin II (AII) elicited virtually immediate, dose-related increments in cytosolic calcium [( Ca++]i) measured by the Quin 2 technique and stimulated approximately proportional secretion of norepinephrine, epinephrine, and dopamine measured by liquid chromatography with electrochemical detection. Peak responses of [Ca++]i to AII were similar to peak responses to nicotine or KCl. Pre-treatment with verapamil or washing the cells in calcium-free medium attenuated the stimulatory effect of AII on [Ca++]i. Pre-treatment with nicotine, which temporarily inactivates cholinergic receptor-activated calcium channels, did not affect [Ca++]i responses to AII. The results indicate functional effects of AII on cultured chromaffin cells. The mechanism of cellular activation by AII appears to include increases in [Ca++]i due to opening of membrane calcium channels which may be unrelated to cholinergic receptor-operated calcium channels. 相似文献
13.
14.
Angiotensin II bi-directionally regulates cyclooxygenase-2 expression in intestinal epithelial cells 总被引:1,自引:0,他引:1
Tani T Ayuzawa R Takagi T Kanehira T Maurya DK Tamura M 《Molecular and cellular biochemistry》2008,315(1-2):185-193
We previously demonstrated that angiotensin II (Ang II) receptor signaling is involved in azoxymethane-induced mouse colon tumorigenesis. In order to clarify the role of Ang II in COX-2 expression in the intestinal epithelium, the receptor subtype-specific effect on COX-2 expression in a rat intestinal epithelial cell line (RIE-1) has been investigated. Ang II dose- and time-dependently increased the expression of COX-2, but not COX-1 mRNA and protein. This stimulation was completely blocked by the AT(1) receptor antagonist but not the AT(2) receptor antagonist. Ang II and lipopolysaccharide (LPS) additively induced COX-2 protein in RIE-1 cells, whereas the LPS-induced COX-2 expression was significantly attenuated by low concentrations of Ang II or the AT(2) agonistic peptide CGP-42112A only in AT(2) over-expressed cells. These data indicate that Ang II bi-directionally regulates COX-2 expression via both AT(1) and AT(2) receptors. Control of COX-2 expression through Ang II signaling may have significance in cytokine-induced COX-2 induction and colon tumorigenesis. 相似文献
15.
16.
Effects of angiotensin II (AII) on diacylglycerol (DAG) synthesis were examined in calf adrenal glomerulosa cells. AII provoked rapid increases in [3H]glycerol-labeling and content of DAG. Effects on [3H]glycerol-labeling of DAG were observed both in cells prelabeled with [3H]glycerol for 60 minutes, and when AII and [3H]glycerol were added simultaneously. Increases in [3H] DAG labeling were associated with increases in total glycerolipid labeling, and in simultaneous addition experiments, were preceded by increased [3H] phosphatidic acid (PA) labeling. Labeling of glycerol-3-PO4, on the other hand, was not increased by AII, suggesting that increases in lipid labeling were not due to prior increases in precursor specific activity. ACTH, which does not increase the hydrolysis of inositol-phospholipids appreciably in this tissue, provoked increases in content and [3H]glycerol-labeling of DAG, which were only slightly less than those provoked by AII. Thus, part of the AII-induced increase in DAG may also be derived from sources other than inositol-phospholipids. Moreover, AII-induced increases in DAG appear to be at least partly derived from increased de novo synthesis of PA. 相似文献
17.
We have investigated the effects of endogenous angiotensin II (ANG II) on hepatic angiotensinogen mRNA levels in rats. Changes in endogenous ANG II were induced by various sodium intakes (standard-, low-, and high-sodium) or by enalapril treatment. In a low sodium state for 2 weeks, angiotensinogen mRNA levels and plasma ANG II concentration increased 1.3-fold and 1.6-fold compared to those in standard sodium state, respectively. In a high sodium state, angiotensinogen mRNA levels and plasma ANG II concentration decreased by 42% and 56% compared to the standard sodierm state, respectively. Four hours after treatment with enalapril (3 mg/kg), angiotensinogen mRNA level and plasma ANG II concentration decreased by 25% and 12% compared to the standard sodium state, respectively. There was a close correlation between angiotensinogen mRNA level and plasma ANG II concentration (r = 0.79, P less than 0.01). These results suggest that endogenous ANG II may play an important role in the regulation of hepatic angiotensinogen synthesis. 相似文献
18.
19.
Pernille Keller Charlotte Keller Lindsay E Robinson Bente K Pedersen 《Journal of applied physiology》2004,97(4):1309-1312
Exercise increases IL-6 mRNA in subcutaneous adipose tissue; however, the immediate signal for the IL-6 induction is unknown. We, therefore, explored the possible role of epinephrine in the induction of IL-6 in adipose tissue. Subcutaneous adipose tissue biopsies and blood samples were obtained from eight healthy men (mean age 27 yr, mean height 184 cm, mean weight 83 kg) in response to epinephrine infusion or in response to saline infusion. The rate of epinephrine infusion was such that circulating epinephrine concentrations mimicked that typically seen during exercise. The level of IL-6 mRNA in subcutaneous adipose tissue increased 26-fold (95% confidence interval, 9- to 166-fold) at 3 h of epinephrine infusion compared with controls (P=0.028). In addition, plasma levels of IL-6 increased in response to epinephrine infusion (P <0.001). However, epinephrine did not affect the IL-6 receptor mRNA. In conclusion, epinephrine acutely increases IL-6 mRNA levels in subcutaneous adipose tissue as well as circulating IL-6 levels in healthy men. 相似文献
20.
Angiotensin II modulates gene expression of adrenomedullin receptor components in rat cardiomyocytes
Both adrenomedullin (AM) and angiotensin II (Ang II) are locally-acting hormones in the cardiac ventricles. Previously we reported that AM inhibits Ang II-induced hypertrophy of cultured rat neonatal cardiomyocytes. In this study, we examined whether Ang II affects the gene expression of the AM receptor components of calcitonin-receptor-like receptor (CRLR) and receptor-activity-modifying protein (RAMP) in rat cardiomyocytes. The mRNA levels of RAMP1 and RAMP3 were significantly elevated following 24-h treatment with Ang II without a change of those of RAMP2 and CRLR. AM increased the intracellular cAMP level and the cAMP accumulation by AM was significantly amplified by the 24-h preincubation with Ang II. The effects of Ang II on RAMP1 and RAMP3 expression were abolished by an Ang II type 1 (AT1) receptor antagonist, but not by an AT2 receptor antagonist. Thus, Ang II modulates gene expression of the AM receptor components via AT1 receptor, suggesting alteration of AM actions by Ang II in cultured rat cardiomyocytes. 相似文献