首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A prerequisite of proteomics is the ability to quantify many selected proteins simultaneously. Immunoassays on microarrays are an attractive solution, as equipment and antibodies are available and assays are simple, scalable and reproducible. Recently, considerable progress has been made in this area as evidenced by increased sensitivity and coverage (degree of multiplexing). Routine use of antibody microarrays in research and diagnostic settings will require increased availability of binding reagents, novel signal amplification procedures, inexpensive and robust platforms for microarray production and detection, and turn-key systems for running high-throughput assays.  相似文献   

2.
A major challenge with single-nucleotide polymorphism (SNP) fingerprinting of bacteria and higher organisms is the combination of genome-wide screenings with the potential of multiplexing and accurate SNP detection. Single-nucleotide extension by the minisequencing principle represents a technology that both is highly accurate and enables multiplexing. A current bottleneck for direct genome analyses by minisequencing, however, is the sensitivity, since minisequencing relies on linear signal amplification. Here, we present SNPtrap, which is a novel approach that combines the specificity and possibility of multiplexing by minisequencing with the sensitivity obtained by logarithmic signal amplification by polymerase chain reaction (PCR). We show a SNPtrap proof of principle in a model system for two polymorphic SNP sites in the Salmonella tetrathionate reductase gene (ttrC).  相似文献   

3.
A major challenge with single-nucleotide polymorphism (SNP) fingerprinting of bacteria and higher organisms is the combination of genome-wide screenings with the potential of multiplexing and accurate SNP detection. Single-nucleotide extension by the minisequencing principle represents a technology that both is highly accurate and enables multiplexing. A current bottleneck for direct genome analyses by minisequencing, however, is the sensitivity, since minisequencing relies on linear signal amplification. Here, we present SNPtrap, which is a novel approach that combines the specificity and possibility of multiplexing by minisequencing with the sensitivity obtained by logarithmic signal amplification by polymerase chain reaction (PCR). We show a SNPtrap proof of principle in a model system for two polymorphic SNP sites in the Salmonella tetrathionate reductase gene (ttrC).  相似文献   

4.
The development of multiplex and flexible tests allowing the simultaneous analysis of pathogens presenting a transfusional risk is a real challenge. Current miniaturized platforms have been particularly marked by microarrays. These microsystems allow the optical detection of hundreds of individual targets simultaneously. However, they suffer from a low sensitivity and their combination with a preliminary target amplification step such as PCR is necessary. The variable level of expression of the infectious genomes of interest and their large diversity complicate multiplex amplification. Finally simultaneous analysis of multiple blood-transmitted agents poses numerous difficulties in diagnosis that remain unresolved by currently available technologies.Until recently, scientific and technological advances for pathogen detection have focused on target amplification and optical detection steps. Today, sample preparation is recognized as a critical area to improve. Nanotechnologies can reach the single-cell or molecular scale and consequently overcome several current technological obstacles. They offer new technological tools for improving sample preparation but also for avoiding target amplification and the current fluorescent labeling. The combination of nano-objects and nano-systems in current technologies offers new possibilities for potential applications in the detection of infectious agents.  相似文献   

5.
Considering importance of ganglioside antibodies as biomarkers in various immune-mediated neuropathies and neurological disorders, we developed a high throughput multiplexing tool for the assessment of gangliosides-specific antibodies based on Biolpex/Luminex platform. In this report, we demonstrate that the ganglioside high throughput multiplexing tool is robust, highly specific and demonstrating ~100-fold higher concentration sensitivity for IgG detection than ELISA. In addition to the ganglioside-coated array, the high throughput multiplexing tool contains beads coated with influenza hemagglutinins derived from H1N1 A/Brisbane/59/07 and H1N1 A/California/07/09 strains. Influenza beads provided an added advantage of simultaneous detection of ganglioside- and influenza-specific antibodies, a capacity important for the assay of both infectious antigen-specific and autoimmune antibodies following vaccination or disease. Taken together, these results support the potential adoption of the ganglioside high throughput multiplexing tool for measuring ganglioside antibodies in various neuropathic and neurological disorders.  相似文献   

6.
While microarrays hold considerable promise in large-scale biology on account of their massively parallel analytical nature, there is a need for compatible signal amplification procedures to increase sensitivity without loss of multiplexing. Rolling circle amplification (RCA) is a molecular amplification method with the unique property of product localization. This report describes the application of RCA signal amplification for multiplexed, direct detection and quantitation of nucleic acid targets on planar glass and gel-coated microarrays. As few as 150 molecules bound to the surface of microarrays can be detected using RCA. Because of the linear kinetics of RCA, nucleic acid target molecules may be measured with a dynamic range of four orders of magnitude. Consequently, RCA is a promising technology for the direct measurement of nucleic acids on microarrays without the need for a potentially biasing preamplification step.  相似文献   

7.
Technologies enabling specific recognition of medically relevant nucleic acid sequences will play a pivotal role in future medical diagnosis. Whereas many approaches to molecular diagnosis systems include DNA microarrays on chips and fluorometric detection, the basis of our approach is the use of inexpensive components like plastic or metal thin film electrodes with low multiplexing and an electrochemical detection unit. To increase the sensitivity, PCR can be used as an intermediate step. For selective enrichment, specific nucleic acid probes were covalently attached at their 5′-ends to conducting polycarbonate/carbon fiber electrodes. Complementary oligonucleotides were enriched at the electrodes by cyclic inversion of an electrochemical potential, transferred into a PCR vial and thermally or electrochemically desorbed. The analysis of the PCR product shows the efficiency and selectivity of the electrochemical enrichment. Hybridization of DNA was shown by electrochemical methods, in this work especially by differential pulse voltammetry (DPV) using the single strand specific hybridization redox indicator osmium(VIII)-tetroxide, and potentiometric stripping analysis (PSA). This combination of experimental methods is the basis for a molecular diagnosis system including a disposable nucleic acid modified working electrode for specific enrichment, detection and quantification, and an optional capillary PCR module for fast amplification.  相似文献   

8.
Profiling the amplification and over-expression of the HER2 gene is a key component for defining the prognosis and management of invasive breast carcinoma. Clinical laboratory testing for HER2 gene amplification and over expression has been complicated by an unacceptably high rate of false positive immunohistochemistry (IHC) results, poor reproducibility for the '2+' category of IHC scoring, and reluctant acceptance of alternative testing by fluorescence in situ hybridization (FISH) by the diagnostic pathology community. Novel chromogenic in situ hybridization (CISH) assays have been developed that utilize bright field microscopy and a conventional light microscope for interpretation, but the analytical sensitivity of first generation CISH systems has been problematic. Novel second generation in situ hybridization detection methods based upon polymerized lg detection chemistry, autometallography or enzyme metallography, have been developed that routinely detect endogenous HER2 signals in normal cells (on slide hybridization control) and HER2 signals in both non-amplified and amplified patterns of HER2 genomic signatures. By combining the strength of polymerized peroxidase-labeled antibodies and metallography for gene amplification, with the detection of expression of HER2 encoded protein by IHC on the same slide, both HER2 gene amplification and protein over-expression can be simultaneously evaluated on a cell-by-cell basis in each microscopic field of carcinoma.  相似文献   

9.
The detection of proteins in 2-D gels and their subsequent identification by MS is still the "gold standard" in proteomics. Fluorescent detection has increasingly replaced colorimetric and radiometric detection on gels and blots. The reasons for this are multiple and varied and include higher sensitivity, better quantitation, increased dynamic range, speed, safety and ease of use. Unlike other methods, fluorescent protein detection is also typically very consistent in response from protein to protein and in many cases is compatible with MS methods for protein identification. The superior sensitivity and benefits achieved by fluorescent techniques have spurred the development of instrumentation capable of delivering precise, sensitive, high-resolution image acquisition over a wide variety of excitation and emission wavelengths. This report focuses on applications using the highly sensitive, charge-coupled device based ProXPRESS multilabel imager, readily configurable for image acquisition over a wide variety of wavelengths (380-700 nm and ultraviolet (UV)) using xenon lamp or UV excitation. The ability to simultaneously detect enzyme activities or protein modifications with different color fluorescent probes in addition to total protein amounts (multiplexing) allows the further mining of proteomic data content from a single set of protein samples. To this end, the development of instrumentation that enables a multiplexing strategy will become central to in-depth proteomic studies. The ProXPRESS maximizes the efficiency of experimental strategies that require flexibility and multicolor fluorescence detection.  相似文献   

10.
Grosset A  Moskowitz K  Nelsen C  Pan T  Davidson E  Orser CS 《Peptides》2005,26(11):2193-2200
Structurally unique, synthetic prion peptides provide the basis of a simple assay to serve as both a detection and signal amplification system that distinguishes the normal prion protein, PrPC, from the misfolded prion protein, PrPSc, that is associated with the occurrence of transmissible spongiform encephalopathies (TSE). Proof-of-principle has been shown on brain samples from an experimental scrapie hamster model. The assay demonstrates very sensitive detection of PrPSc in animal brain tissue with potential application for early presymptomatic detection in animal screening. Furthermore, the sensitivity of the assay could enable blood tests for this TSE disease as well as other amyloid and/or misfolded protein diseases.  相似文献   

11.
Nanoparticle labels in immunosensing using optical detection methods   总被引:1,自引:0,他引:1  
Efforts to improve the performance of immunoassays and immunosensors by incorporating different kinds of nanostructures have gained considerable momentum over the last decade. Apart from liposomes, which will not be discussed here, most groups focus on artificial, particulate marker systems, both organic and inorganic. The underlying detection procedures may be based either on electro-magnetical or optical techniques. This review will be confined to the latter only, comprising nanoparticle applications generating signals as diverse as static and time-resolved luminescence, one- and two-photon absorption, Raman and Rayleigh scattering as well as surface plasmon resonance and others. In general, all endeavors cited are geared to achieve one or more of the following goals: lowering of detection limits (if possible, down to single-molecule level), parallel integration of multiple signals (multiplexing), signal amplification by several orders of magnitude and prevention of photobleaching effects with concomitant maintenance of antigen binding specificity and sensitivity. Inorganic nanoparticle labels based on noble metals, semiconductor quantum dots and nanoshells appear to be the most versatile systems for these bioanalytical applications of nanophotonics.  相似文献   

12.
13.
多重环介导等温扩增技术研究进展   总被引:2,自引:0,他引:2  
林文慧  邹秉杰  宋沁馨  周国华 《遗传》2015,37(9):899-910
环介导等温扩增技术(Loop-mediated isothermal amplification, LAMP)因其扩增速度快、灵敏度和特异性高、仪器要求低等优点而被广泛应用于核酸诊断领域。为充分利用LAMP技术优势、提高诊断检测的效率与可靠性、扩展其应用范围,同时节约试剂成本,近年来多重LAMP技术的研究成为一大热点。常规的LAMP扩增产物检测方法多数以聚合反应的双链DNA产物或其副产物为基础,只能判断有无扩增反应发生,而难以识别多重扩增产物的靶标来源及其特异性。为实现多重扩增产物的高特异检测,各国学者通过对该技术巧妙的改进或与其他技术相偶联,发展了一系列多重LAMP扩增检测技术。然而上述狭义的多重LAMP技术依然存在因引物间相互干扰、扩增效率存在差异而引发歧视性扩增的局限,限制了多重扩增的重数。近年研究活跃的微型扩增技术以其实现多个平行、互不干扰的小体积单重扩增的技术优势打破了这一局限,由此产生了新型的广义多重LAMP扩增技术。这些技术还具有试剂消耗少、自动化程度较高、交叉污染风险更小以及更适合对较多靶标进行现场快速检测等优势。本文分别从狭义多重LAMP的方法原理及其扩增反应体系优化、广义多重LAMP的方法原理以及多重LAMP技术在诊断检测中的应用等方面对近年来多重LAMP技术的研究进展进行了综述。  相似文献   

14.
Microarray technology provides efficient access to genetic information using miniaturized, high-density arrays of DNA probes. We investigated the application of luminescent nanoparticles as probes for Affymetrix GeneChips detection without the need for signal amplification. Our goal is to investigate the feasibility of using luminescent nanoparticles as probes in a commercial microarray system without changing its configurations. With the present imaging modality and existing optical excitation and detection systems of the Affymetrix GeneChips, our early results indicate that nanoparticles not only can be used for GeneChip labeling but also are superior to the traditional fluorescent protein streptavidin-phycoerythrin (SAPE). The advantage of the particles lies in a simplified staining procedure, higher photobleaching threshold, and enhanced luminescence signal. The nanoparticles can be used for detection of low-abundance targets without any amplification step. A concentration detection limit of 50 fM has been achieved. This work demonstrates the feasibility of using luminescent nanoparticles as probes for commercial microarray systems, making them less costly, more reproducible, and potentially quantitative.  相似文献   

15.
Signal amplification strategies are essential for sensitive and efficient detection. Among the recent amplification strategies, the hybridization chain reaction has been intensively studied because it has advantages of reaction at constant temperature and detection at low cost without specialized equipment. In this review, we have discussed how to adjust experimental conditions of the hybridization chain reaction and attractive signal amplification techniques including colorimetric, fluorescence, and electrochemistry. As a result, many studies using the hybridization chain reaction have been successful in detecting sensitive signals by enhancing the signaling of the various targets. These exciting features of the hybridization chain reaction have the potential to be widely used in many areas such as in situ disease diagnosis, food, and environmental analysis. Therefore, various platforms developed by applying this technology are expected to play an essential role as an efficient biosensor in many fields in the near future.  相似文献   

16.
Microarray-based gene expression analysis plays a pivotal role in modern biology and is poised to enter the field of molecular diagnostics. Current microarray-based gene expression systems typically require enzymatic conversion of mRNA into labeled cDNA or cRNA. Conversion to cRNA involves a target amplification step that overcomes the low sensitivity associated with commonly used fluorescent detection methods. Herein, we present a novel enzyme-free, microarray-based gene expression system that uses unamplified total human RNA sample as the target nucleic acid. The detection of microarray-bound RNA molecules is accomplished by targeting the poly-A tail with an oligo-dT20 modified gold nanoparticle probe, signal amplification by autometallography, and subsequent measurement of nanoparticle-mediated light scattering. The high sensitivity afforded by the nanoparticle probes allows differential gene expression from as little as 0.5 μg unamplified total human RNA in a 2 h hybridization without the need for elaborate sample labeling steps.  相似文献   

17.
This paper reports the pre-concentration of C-reactive protein (CRP) antigen with packed beads in a microfluidic chamber to enhance the sensitivity of the miniaturized fluorescence detection system for portable point-of-care testing devices. Although integrated optical systems in microfluidic chips have been demonstrated by many groups to replace bulky optical systems, the problem of low sensitivity is a hurdle for on-site clinical applications. Hence we integrated the pre-concentration module with miniaturized detection in microfluidic chips (MDMC) to improve analytical sensitivity. Cheap silicon-based photodiodes with optical filter were packaged in PDMS microfluidic chips and beads were packed by a frit structure for pre-concentration. The beads were coated with CRP antibodies to capture antigens and the concentrated antigens were eluted by an acid buffer. The pre-concentration amplified the fluorescence intensity by about 20-fold and the fluorescence signal was linearly proportional to the concentration of antigens. Then the CRP antigen was analyzed by competitive immunoassay with an MDMC. The experimental result demonstrated that the analytical sensitivity was enhanced up to 1.4 nM owing to the higher signal-to-noise ratio. The amplification of fluorescence by pre-concentration of bead-based immunoassay is expected to be one of the methods for portable fluorescence detection system.  相似文献   

18.
We report the first use of a polymerization-based ELISA substrate solution employing enzymatically mediated radical polymerization as a dual-mode amplification strategy. Enzymes are selectively coupled to surfaces to generate radicals that subsequently lead to polymerization-based amplification (PBA) and biodetection. Sensitivity and amplification of the polymerization-based detection system were optimized in a microwell strip format using a biotinylated microwell surface with a glucose oxidase (GOx)-avidin conjugate. The immobilized GOx is used to initiate polymerization, enabling the detection of the biorecognition event visually or through the use of a plate reader. Assay response is compared to that of an enzymatic substrate utilizing nitroblue tetrazolium in a simplified assay using biotinylated wells. The polymerization substrate exhibits equivalent sensitivity (2 μg/mL of GOx-avidin) and over three times greater signal amplification than this traditional enzymatic substrate since each radical that is enzymatically generated leads to a large number of polymerization events. Enzyme-mediated polymerization proceeds in an ambient atmosphere without the need for external energy sources, which is an improvement upon previous PBA platforms. Substrate formulations are highly sensitive to both glucose and iron concentrations at the lowest enzyme concentrations. Increases in amplification time correspond to higher assay sensitivities with no increase in non-specific signal. Finally, the polymerization substrate generated a signal to noise ratio of 14 at the detection limit (156 ng/mL) in an assay of transforming growth factor-beta.  相似文献   

19.

Many environmental applications exist for biosensors capable of providing real-time analyses. One pressing current need is monitoring for agents of chemical- and bio-terrorism. These applications require systems that can rapidly detect small organics including nerve agents, toxic proteins, viruses, spores and whole microbes. A second area of application is monitoring for environmental pollutants. Processing of grab samples through chemical laboratories requires significant time delays in the analyses, preventing the rapid mapping and cleanup of chemical spills. The current state of development of miniaturized, integrated surface plasmon resonance (SPR) sensor elements has allowed for the development of inexpensive, portable biosensor systems capable of the simultaneous analysis of multiple analytes. Most of the detection protocols make use of antibodies immobilized on the sensor surface. The Spreeta 2000 SPR biosensor elements manufactured by Texas Instruments provide three channels for each sensor element in the system. A temperature-controlled two-element system that monitors for six analytes is currently in use, and development of an eight element sensor system capable of monitoring up to 24 different analytes will be completed in the near future. Protein toxins can be directly detected and quantified in the low picomolar range. Elimination of false positives and increased sensitivity is provided by secondary antibodies with specificity for different target epitopes, and by sensor element redundancy. Inclusion of more than a single amplification step can push the sensitivity of toxic protein detection to femtomolar levels. The same types of direct detection and amplification protocols are used to monitor for viruses and whole bacteria or spores. Special protocols are required for the detection of small molecules. Either a competition type assay where the presence of analyte inhibits the binding of antibodies to surface-immobilized analyte, or a displacement assay, where antibodies bound to analyte on the sensor surface are displaced by free analyte, can be used. The small molecule detection assays vary in sensitivity from the low micromolar range to the high picomolar.

  相似文献   

20.
Many environmental applications exist for biosensors capable of providing real-time analyses. One pressing current need is monitoring for agents of chemical- and bio-terrorism. These applications require systems that can rapidly detect small organics including nerve agents, toxic proteins, viruses, spores and whole microbes. A second area of application is monitoring for environmental pollutants. Processing of grab samples through chemical laboratories requires significant time delays in the analyses, preventing the rapid mapping and cleanup of chemical spills. The current state of development of miniaturized, integrated surface plasmon resonance (SPR) sensor elements has allowed for the development of inexpensive, portable biosensor systems capable of the simultaneous analysis of multiple analytes. Most of the detection protocols make use of antibodies immobilized on the sensor surface. The Spreeta 2000 SPR biosensor elements manufactured by Texas Instruments provide three channels for each sensor element in the system. A temperature-controlled two-element system that monitors for six analytes is currently in use, and development of an eight element sensor system capable of monitoring up to 24 different analytes will be completed in the near future. Protein toxins can be directly detected and quantified in the low picomolar range. Elimination of false positives and increased sensitivity is provided by secondary antibodies with specificity for different target epitopes, and by sensor element redundancy. Inclusion of more than a single amplification step can push the sensitivity of toxic protein detection to femtomolar levels. The same types of direct detection and amplification protocols are used to monitor for viruses and whole bacteria or spores. Special protocols are required for the detection of small molecules. Either a competition type assay where the presence of analyte inhibits the binding of antibodies to surface-immobilized analyte, or a displacement assay, where antibodies bound to analyte on the sensor surface are displaced by free analyte, can be used. The small molecule detection assays vary in sensitivity from the low micromolar range to the high picomolar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号