首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The signal interactions between calcium (Ca2+) and reactive oxygen species (ROS) originated from plasma membrane NADPH oxidase in abscisic acid (ABA)-induced antioxidant defence were investigated in leaves of maize (Zea mays L.) seedlings. Treatment with ABA led to significant increases in the activity of plasma membrane NADPH oxidase, the production of leaf O2-, and the activities of several antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR). However, such increases were blocked by the pretreatment with Ca2+ chelator EGTA or Ca2+ channel blockers La3+ and verapamil, and NADPH oxidase inhibitors such as diphenylene iodonium (DPI), imidazole and pyridine. Treatment with Ca2+ also significantly induced the increases in NADPH oxidase activity, O2- production and the activities of antioxidant enzymes, and the increases were arrested by pretreatment with the NADPH oxidase inhibitors. Treatment with oxidative stress induced by paraquat, which generates O2-, led to the induction of antioxidant defence enzymes, and the up-regulation was suppressed by the pretreatment of Ca2+ chelator and Ca2+ channel blockers. Our data suggest that a cross-talk between Ca2+ and ROS originated from plasma membrane-bound NADPH oxidase is involved in the ABA signal transduction pathway leading to the induction of antioxidant enzyme activity, and Ca2+ functions upstream as well as downstream of ROS production in the signal transduction event in plants.  相似文献   

2.
硫化氢(H2S)被认为是继NO和CO之后的第三种气体信号分子,是一种新的内皮细胞源性血管舒张因子,在平滑肌松弛、海马长时程增强、脑发育和炎症等方面发挥着重要的生理病理作用。H2S具有很强的抗氧化作用,被认为是其发挥生理病理作用的重要机制之一。NADPH氧化酶是生物体内产生活性氧类(reactive oxygen species,ROS)的主要酶,在动脉粥样硬化、肾间质纤维化等的发生和发展起着关键作用。本文重点综述生理浓度下H2S对NADPH氧化酶的抑制作用及其机制,并简述其重要的生理病理意义。  相似文献   

3.
Voltage gated proton channels and NADPH oxidase function cooperatively in phagocytes during the respiratory burst, when reactive oxygen species are produced to kill microbial invaders. Although these molecules are distinct entities, with no proven physical interaction, their presence and activity in many cells appears to be coordinated. We describe these interactions and discuss several types of mechanisms that might explain them.  相似文献   

4.
The induction of the respiratory burst in human neutrophils by combinations of fMLP and either PAF or LTB4 was studied. Pretreatment with PAF (0.0001 to 10 uM), which by itself did not elicit the burst, greatly enhanced the rate and extent of fMLP-induced superoxide production. A synergism of a different kind was observed with the reversed stimulus sequence: Pretreatment with fMLP made the neutrophils capable to respond to PAF with superoxide production. A moderate enhancement of the fMLP response was also obtained following pretreatment with LTB4. The response of the cells to LTB4, however, was not influenced by fMLP, and no synergism was observed between the two neutrophil products PAF and LTB4. The results of this study demonstrate a marked synergism between fMLP and PAF and suggest that PAF may function as an amplifier of the respiratory burst response of stimulated neutrophils.  相似文献   

5.
6.
The aim of this study was to investigate the possible relationship between NADPH oxidase activity and changes in cytosolic Ca2+ in response to different agonists. Treatment of neutrophils with leukotriene B4 (LTB4) demonstrated characteristic changes to cytoslic Ca2+ yielding an EC50 of 4 nM. The pA2 values for the specific LTB4 receptor (BLT) antagonists, U-75302 and LY-255283 were 6.32 and 6.38, respectively. Similarly, neutrophils treated with N-formyl-l-methionyl-l-leucyl-l-phenylalanine (FMLP) and platelet activating factor (PAF) exhibited changes in cytoslic Ca2+ in a dose dependant manner with pD2 values of 9.0 and 9.9, respectively. The phorbol ester PMA prevented elevations in cytosolic Ca2+ in response to LTB4, FMLP and PAF with IC50 values of 5.88, 1.44 and 5.71 nM, respectively. In addition, potent NADPH oxidase inhibitors apocynin and diphenyleneiodonium (DPI) inhibited FMLP mediated cytosolic Ca2+ release. These results demonstrate that inhibition of the NADPH oxidase suppresses cytosolic Ca2+ release in FMLP activated human neutrophils.  相似文献   

7.
Reactive oxygen species (ROS) function as intracellular signaling molecules in a diverse range of biological processes. However, it is unclear how freely diffusible ROS dictate specific cellular responses. In this study, we demonstrate that nicotinamide adenine dinucleotide phosphate reduced oxidase 4 (Nox4), a major Nox isoform expressed in nonphagocytic cells, including vascular endothelium, is localized to the endoplasmic reticulum (ER). ER localization of Nox4 is critical for the regulation of protein tyrosine phosphatase (PTP) 1B, also an ER resident, through redox-mediated signaling. Nox4-mediated oxidation and inactivation of PTP1B in the ER serves as a regulatory switch for epidermal growth factor (EGF) receptor trafficking and specifically acts to terminate EGF signaling. Consistent with this notion, PTP1B oxidation could also be modulated by ER targeting of antioxidant enzymes but not their untargeted counterparts. These data indicate that the specificity of intracellular ROS-mediated signal transduction may be modulated by the localization of Nox isoforms within specific subcellular compartments.  相似文献   

8.
Stimulated phagocytes undergo a burst in respiration whereby molecular oxygen is converted to superoxide anion through the action of an NADPH-dependent oxidase. The multicomponent phagocyte oxidase is unassembled and inactive in resting cells but assembles at the plasma or phagosomal membrane upon phagocyte activation. Oxidase components include flavocytochrome b558, an integral membrane heterodimer comprised of gp91phox and p22phox, and three cytosolic proteins, p47phox, p67phox, and Rac1 or Rac2, depending on the species and phagocytic cell. In a sense, the phagocyte oxidase is spatially regulated, with critical elements segregated in the membrane and cytosol but ready to undergo nearly immediate assembly and activation in response to stimulation. To achieve such spatial regulation, the individual components in the resting phagocyte adopt conformations that mask potentially interactive structural domains that might mediate productive intermolecular associations and oxidase assembly. In response to stimulation, post-translational modifications of the oxidase components release these constraints and thereby render potential interfaces accessible and interactive, resulting in translocation of the cytosolic elements to the membrane where the functional oxidase is assembled and active. This review summarizes data on the structural features of the phagocyte oxidase components and on the agonist-dependent conformational rearrangements that contribute to oxidase assembly and activation.  相似文献   

9.
RhoG is a Rho family small GTPase implicated in cytoskeletal regulation, acting either upstream of or in parallel to Rac1. The precise function(s) of RhoG in vivo has not yet been defined. We have identified a novel role for RhoG in signaling the neutrophil respiratory burst stimulated by G protein-coupled receptor agonists. Bone marrow-derived neutrophils from RhoG knockout (RhoG(-/-)) mice exhibited a marked impairment of oxidant generation in response to C5a or fMLP, but normal responses to PMA or opsonized zymosan and normal bacterial killing. Activation of Rac1 and Rac2 by fMLP was diminished in RhoG(-/-) neutrophils only at very early (5 s) time points (by 25 and 32%, respectively), whereas chemotaxis in response to soluble agonists was unaffected by lack of RhoG. Additionally, fMLP-stimulated phosphorylation of protein kinase B and p38MAPK, activation of phospholipase D, and calcium fluxes were equivalent in wild-type and RhoG(-/-) neutrophils. Our results define RhoG as a critical component of G protein-coupled receptor-stimulated signaling cascades in murine neutrophils, acting either via a subset of total cellular Rac relevant to oxidase activation and/or by a novel and as yet undefined interaction with the neutrophil NADPH oxidase.  相似文献   

10.
The NADPH oxidase NOX4 has emerged as an important source of reactive oxygen species in signal transduction, playing roles in physiological and pathological processes. NOX4 mediates transforming growth factor-β-induced intracellular signals that provoke liver fibrosis, and preclinical assays have suggested NOX4 inhibitors as useful tools to ameliorate this process. However, the potential consequences of sustained treatment of liver cells with NOX4 inhibitors are yet unknown. The aim of this work was to analyze whether NOX4 plays a role in regulating liver cell growth either under physiological conditions or during tumorigenesis. In vitro assays proved that stable knockdown of NOX4 expression in human liver tumor cells increased cell proliferation, which correlated with a higher percentage of cells in S/G2/M phases of the cell cycle, downregulation of p21(CIP1/WAF1), increase in cyclin D1 protein levels, and nuclear localization of β-catenin. Silencing of NOX4 in untransformed human and mouse hepatocytes also increased their in vitro proliferative capacity. In vivo analysis in mice revealed that NOX4 expression was downregulated under physiological proliferative situations of the liver, such as regeneration after partial hepatectomy, as well as during pathological proliferative conditions, such as diethylnitrosamine-induced hepatocarcinogenesis. Xenograft experiments in athymic mice indicated that NOX4 silencing conferred an advantage to human hepatocarcinoma cells, resulting in earlier onset of tumor formation and increase in tumor size. Interestingly, immunochemical analyses of NOX4 expression in human liver tumor cell lines and tissues revealed decreased NOX4 protein levels in liver tumorigenesis. Overall, results described here strongly suggest that NOX4 would play a growth-inhibitory role in liver cells.  相似文献   

11.
The protective actions of prostacyclin (PGI(2) ) are mediated by cyclic AMP (cAMP) which is reduced by type 4 phosphodiesterases (PDE4) which hydrolyze cAMP. Superoxide (O2(-)) from NADPH oxidase (Nox) is associated with impaired PGI(2) bioactivity. The objective of this study, therefore, was to study the relationship between Nox and PDE4 expression in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with the thromboxane A(2) analog, U46619, 8-isoprostane F(2α) (8IP), or tumor necrosing factor alpha (TNFα) [±iloprost (a PGI(2) analog)] and the expression of PDE4A, B, C, and D and splice variants thereof assessed using Western blotting and qPCR and mRNA silencing of Nox4 and Nox5. Effects on cell replication and angiogenesis were also studied. U46619, 8IP, and TNFα increased the expression of Nox 4 and Nox 5 and all PDE4 isoforms as well as cell replication and tubule formation (index of angiogenesis), effects inhibited by mRNA silencing of Nox4 (but not Nox5) and iloprost and rolipram. These data demonstrate that upregulation of Nox4 leads to an upregulation of PDE4A, B, and D and increased hydrolysis of cAMP which in turn augments cell replication and angiogenesis. This mechanism may be central to vasculopathies associated with endothelial dysfunction since the PGI(2)-cAMP signaling axis plays a key role in mediating functions that include hemostasis and angiogenesis.  相似文献   

12.
The neutrophil NADPH oxidase.   总被引:29,自引:0,他引:29  
The NADPH oxidase of phagocytes catalyzes the conversion of oxygen to O2(-). This multicomponent enzyme complex contains five essential protein components, two in the membrane and three in the cytosol. Unassembled and inactive in resting phagocytes, the oxidase becomes active after translocation of cytosolic components to the membrane to assemble a functional oxidase. Multiple factors regulate its assembly and activity, thus serving to maintain this highly reactive system under spatial and temporal control until recruited for antimicrobial or proinflammatory events. The recent identification of homologs of one of the membrane components in nonphagocytic cells will expand understanding of the biological contexts in which this system may function.  相似文献   

13.
14.
Interleukin 1 receptor (IL-1R)-associated kinase-4 (IRAK-4) is required for various responses induced by IL-1R and Toll-like receptor signals. However, the molecular mechanism of IRAK-4 signaling and the role of its kinase activity have remained elusive. In this report, we demonstrate that IRAK-4 is recruited to the IL-1R complex upon IL-1 stimulation and is required for the recruitment of IRAK-1 and its subsequent activation/degradation. By reconstituting IRAK-4-deficient cells with wild type or kinase-inactive IRAK-4, we show that the kinase activity of IRAK-4 is required for the optimal transduction of IL-1-induced signals, including the activation of IRAK-1, NF-kappaB, and JNK, and the maximal induction of inflammatory cytokines. Interestingly, we also discover that the IRAK-4 kinase-inactive mutant is still capable of mediating some signals. These results suggest that IRAK-4 is an integral part of the IL-1R signaling cascade and is capable of transmitting signals both dependent on and independent of its kinase activity.  相似文献   

15.
As concepts evolve in mammalian and yeast prion biology, rather preliminary research investigating the interplay between prion and RNA processes are gaining momentum. The yeast prion [PSI+] represents an aggregated state of the translation termination factor Sup35 resulting in the tendency of ribosomes to readthrough stop codons. This "nonsense suppression" activity is investigated for its possible physiological role to engender on Saccharomyces cerevisiae the ability to respond to stress or variable growth conditions and thereby act as a capacitor to evolve. The interaction between prion and RNA is a two way street--the cell may have adopted RNA processes in translation to govern the presence of prions and the [PSI+] prion's nonsense suppressor phenotype may exhibit different growth phenotypes by its control of translation termination. RNA processes in the mammalian cell also effect and are affected by prions.  相似文献   

16.
17.
NADPH oxidase activation and assembly during phagocytosis   总被引:20,自引:0,他引:20  
Generation of superoxide (O2-) by the NADPH-dependent oxidase of polymorphonuclear leukocytes is an essential component of the innate immune response to invading microorganisms. To examine NADPH oxidase function during phagocytosis, we evaluated its activation and assembly following ingestion of serum-opsonized Neisseria meningitidis, serogroup B (NMB), and compared it with that elicited by serum-opsonized zymosan (OPZ). Opsonized N. meningitidis- and OPZ-dependent generation of reactive oxygen species by polymorphonuclear leukocytes peaked early and then terminated. Phosphorylation of p47phox coincided with peak generation of reactive oxygen species by either stimulus, consistent with a role for p47phox phosphorylation during NADPH oxidase activation, and correlated with phagosomal colocalization of flavocytochrome b558 (flavocytochrome b) and p47phox and p67phox (p47/67phox). Termination of respiratory burst activity did not reflect dephosphorylation of plasma membrane- and/or phagosome-associated p47phox; in contrast, the specific activity of phosphorylated p47phox at the phagosomal membrane increased. Most significantly, termination of oxidase activity paralleled the loss of p47/67phox from both NMB and OPZ phagosomes despite the continued presence of flavocytochrome b. These data suggest that 1) the onset of respiratory burst activity during phagocytosis is linked to the phosphorylation of p47phox and its translocation to the phagosome; and 2) termination of oxidase activity correlates with loss of p47/67phox from flavocytochrome b-enriched phagosomes and additional phosphorylation of membrane-associated p47phox.  相似文献   

18.
Adipocyte differentiation is a complex process regulated among other factors by insulin and the production of reactive oxygen species (ROS). NOX4 is a ROS generating NADPH oxidase enzyme mediating insulin's action in 3T3L1 adipocytes. In the present paper we show that NOX4 is expressed at high levels both in white and brown preadipocytes and that differentiation into adipocytes results in a decrease in their NOX4 mRNA content. These in vitro results were confirmed in vivo by demonstrating that in intact adipose tissue the majority of NOX4 expressing cells are localized within the preadipocyte containing stromal/vascular fraction, rather than in the portion consisting of mature adipocytes. In line with these observations, quantification of NOX4 mRNA in fat derived from different rodent models of insulin resistance indicated that alteration in NOX4 expression reflects changes in the ratio of adipocyte/interstitial fractions. In conclusion, we reveal that decreased NOX4 mRNA content is a hallmark of adipocyte differentiation and that NOX4 expression measured in whole adipose tissue is not an unequivocal indicator of intact or impaired insulin action.  相似文献   

19.
Vascular reactive oxygen species (ROS) are known to be involved in atherosclerosis development and progression. NADPH oxidase 4 (Nox4) is a constitutively active ROS-producing enzyme that is highly expressed in the vascular endothelium. Nox4 is unique in its biology and has been implicated in vascular repair, however, the role of Nox4 in atherosclerosis is unknown. Therefore, to determine the effect of endothelial Nox4 on development of atherosclerosis, Apoe E-/- mice +/- endothelial Nox4 (ApoE-/- + EC Nox4) were fed a high cholesterol/high fat (Western) diet for 24 weeks. Significantly fewer atherosclerotic lesions were observed in the ApoE-/- + EC Nox4 mice as compared to the ApoE-/- littermates, which was most striking in the abdominal region of the aorta. In addition, markers of T cell populations were markedly different between the groups; T regulatory cell marker (FoxP3) was increased whereas T effector cell marker (T-bet) was decreased in aorta from ApoE-/- + EC Nox4 mice compared to ApoE-/- alone. We also observed decreased monokine induced by gamma interferon (MIG; CXCL9), a cytokine known to recruit and activate T cells, in plasma and tissue from ApoE-/- + EC Nox4 mice. To further investigate the link between endothelial Nox4 and MIG expression, we utilized cultured endothelial cells from our EC Nox4 transgenic mice and human cells with adenoviral overexpression of Nox4. In these cultured cells, upregulation of Nox4 attenuated endothelial cell MIG expression in response to interferon-gamma. Together these data suggest that endothelial Nox4 expression reduces MIG production and promotes a T cell distribution that favors repair over inflammation, leading to protection from atherosclerosis.  相似文献   

20.
Cycling hypoxia is a well-recognized phenomenon within animal and human solid tumors. It mediates tumor progression and radiotherapy resistance through mechanisms that involve reactive oxygen species (ROS) production. However, details of the mechanism underlying cycling hypoxia-mediated radioresistance remain obscure. We have previously shown that in glioblastoma, NADPH oxidase subunit 4 (Nox4) is a critical mediator involved in cycling hypoxia-mediated ROS production and tumor progression. Here, we examined the impact of an in vivo tumor microenvironment on Nox4 expression pattern and its impact on radiosensitivity in GBM8401 and U251, two glioblastoma cell lines stably transfected with a dual hypoxia-inducible factor-1 (HIF-1) signaling reporter construct. Furthermore, in order to isolate hypoxic tumor cell subpopulations from human glioblastoma xenografts based on the physiological and molecular characteristics of tumor hypoxia, several techniques were utilized. In this study, the perfusion marker Hoechst 33342 staining and HIF-1 activation labeling were used together with immunofluorescence imaging and fluorescence-activated cell sorting (FACS). Our results revealed that Nox4 was predominantly highly expressed in the endogenous cycling hypoxic areas with HIF-1 activation and blood perfusion within the solid tumor microenvironment. Moreover, when compared to the normoxic or chronic hypoxic cells, the cycling hypoxic tumor cells derived from glioblastoma xenografts have much higher Nox4 expression, ROS levels, and radioresistance. Nox4 suppression in intracerebral glioblastoma-bearing mice suppressed tumor microenvironment-mediated radioresistance and enhanced the efficiency of radiotherapy. In summary, our findings indicated that cycling hypoxia-induced Nox4 plays an important role in tumor microenvironment-promoted radioresistance in glioblastoma; hence, targeting Nox4 may be an attractive therapeutic strategy for blocking cycling hypoxia-mediated radioresistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号