首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae.   总被引:2,自引:0,他引:2  
  相似文献   

4.
An AU-rich element (ARE) consisting of repeated canonical AUUUA motifs confers rapid degradation to many cytokine mRNAs when present in the 3' untranslated region. Destabilization of mRNAs with AREs (ARE-mRNAs) is consistent with the interaction of ARE-binding proteins such as tristetraprolin and the four AUF1 isoforms. However, the association of the AUF1-mRNA interaction with decreased ARE-mRNA stability is correlative and has not been directly tested. We therefore determined whether overexpression of AUF1 isoforms promotes ARE-mRNA destabilization and whether AUF1 isoforms are limiting components for ARE-mRNA decay. We show that the p37 AUF1 isoform and, to a lesser extent, the p40 isoform possess ARE-mRNA-destabilizing activity when overexpressed. Surprisingly, overexpressed p37 AUF1 also destabilized reporter mRNAs containing a noncanonical but AU-rich 3' untranslated region. Since overexpressed p37 AUF1 could interact in vivo with the AU-rich reporter mRNA, AUF1 may be involved in rapid turnover of mRNAs that lack canonical AREs. Moreover, overexpression of p37 AUF1 restored the ability of cells to rapidly degrade ARE-mRNAs when that ability was saturated and inhibited by overexpression of ARE-mRNAs. Finally, activation of ARE-mRNA decay often involves a translation-dependent step, which was eliminated by overexpression of p37 AUF1. These data indicate that the p37 AUF1 isoform and, to some extent, the p40 isoform are limiting factors that facilitate rapid decay of AU-rich mRNAs.  相似文献   

5.
He C  Schneider R 《The EMBO journal》2006,25(16):3823-3831
Short-lived cytokine mRNAs contain an AU-rich destabilizing element (ARE). AUF1 proteins bind the ARE, undergo shuttling, and promote cytoplasmic ARE-mRNA decay through a poorly understood mechanism. We therefore identified AUF1-interacting proteins that may play a role in ARE-mRNA decay. We used mass-spectrometry to identify 14-3-3sigma protein as an AUF1-interacting protein. 14-3-3sigma binds selectively and strongly to p37 AUF1 and to a lesser extent to the p40 isoform, the two isoforms most strongly associated with ARE-mRNA decay, but not to the two larger isoforms, p42 and p45. The 14-3-3sigma interaction site on p37 was mapped to a region found only in the two smaller AUF1 isoforms and which overlaps a putative nuclear localization signal (NLS). Stable overexpression of 14-3-3sigma significantly increased cytoplasmic accumulation of p37 AUF1 and reduced the steady-state level and half-life of a reporter ARE-mRNA. siRNA silencing of AUF1 eliminated the effect of 14-3-3sigma overexpression. 14-3-3sigma therefore binds to p37 AUF1, retains it in the cytoplasm probably by masking its NLS, and enhances rapid turnover of ARE-mRNAs.  相似文献   

6.
AU-rich elements (AREs), residing in the 3' untranslated region (UTR) of many labile mRNAs, are important cis-acting elements that modulate the stability of these mRNAs by collaborating with trans-acting factors such as tristetraprolin (TTP). AREs also regulate translation, but the underlying mechanism is not fully understood. Here we examined the function and mechanism of TTP in ARE-mRNA translation. Through a luciferase-based reporter system, we used knockdown, overexpression, and tethering assays in 293T cells to demonstrate that TTP represses ARE reporter mRNA translation. Polyribosome fractionation experiments showed that TTP shifts target mRNAs to lighter fractions. In murine RAW264.7 macrophages, knocking down TTP produces significantly more tumor necrosis factor alpha (TNF-α) than the control, while the corresponding mRNA level has a marginal change. Furthermore, knockdown of TTP increases the rate of biosynthesis of TNF-α, suggesting that TTP can exert effects at translational levels. Finally, we demonstrate that the general translational repressor RCK may cooperate with TTP to regulate ARE-mRNA translation. Collectively, our studies reveal a novel function of TTP in repressing ARE-mRNA translation and that RCK is a functional partner of TTP in promoting TTP-mediated translational repression.  相似文献   

7.
8.
9.
The AU-rich element (ARE) controls the turnover of many unstable mRNAs and their translation. The granulocyte-macrophage colony-stimulating factor (GM-CSF) ARE is known to be a destabilizing element, but its role in translation remains unclear. Here we studied in vivo the role of the GM-CSF ARE on the mRNA and protein expressions of an enhanced green fluorescent protein reporter gene. The GM-CSF ARE had a repressor effect on translation independently of its effect on mRNA levels. In the context of an internal ribosome entry site, the GM-CSF ARE still repressed translation but was no longer functional as a destabilizing element. Gel retardation assays showed that poly(A)-binding protein is displaced from the poly(A) tail when the ARE is present in the 3'-untranslated region. These data suggest that the GM-CSF ARE controls translation and mRNA decay by interfering with poly(A)-binding protein-mediated mRNA circularization.  相似文献   

10.
11.
An AU-rich element (ARE) in the 3'-untranslated region (UTR) of bcl-2 mRNA has previously been shown to be responsible for destabilizing bcl-2 mRNA during apoptosis through increasing AUF1 binding. In the present study, we investigated the effect of the region upstream of the ARE on bcl-2 mRNA stability using serial deletion constructs of the 3'-UTR of bcl-2. Deletion of 30 nucleotides mostly consisting of the CA repeats, located upstream of the ARE, resulted in the stabilization of bcl-2 mRNA abundance, in the absence or presence of the ARE. The specificity of the CA repeats in terms of destabilizing bcl-2 mRNA was proven by the substituting the CA repeats with other alternative repeats of purine/pyrimidine, but this had no effect on the stability of bcl-2 mRNA. CA repeats alone, however, failed to confer instability to bcl-2 or gfp reporter mRNAs, indicating a requirement for additional sequences in the upstream region of the 3'-UTR. Serial deletion and replacement of a part of the region upstream of the CA repeats revealed that the entire 131-nucleotide upstream region is an essential prerequisite for the CA repeat-dependent destabilization of bcl-2 mRNA. Unlike the ARE, CA repeat-mediated degradation of bcl-2 mRNA was not accelerated upon apoptotic stimulus. Moreover, the upstream sequences and CA repeats are conserved among mammals. Collectively, CA repeats contribute to the constitutive decay of bcl-2 mRNA in the steady states, thereby maintaining appropriate bcl-2 levels in mammalian cells.  相似文献   

12.
In the present study we show that IL-10-mediated inhibition of inflammatory gene expression can be mediated by an AU-rich element (ARE) cluster present in the 3' untranslated region (3'UTR) of sensitive genes. A series of chloramphenicol acetyl transferase (CAT) reporter gene constructs were prepared in which different fragments from the IL-10-sensitive KC mRNA 3'UTR were placed downstream of the coding region of the reporter gene CAT. CAT mRNA containing the KC 3'UTR was markedly destabilized as compared with the control CAT mRNA, and the decay rate was further increased in cells stimulated with IL-10. The KC 3'UTR contains an ARE cluster and three isolated ARE motifs. The ARE cluster spanning nucleotides 378-399 appeared to be both necessary and sufficient to mediate sensitivity to IL-10 because a 116-nucleotide fragment that contains the cluster conferred sensitivity, while mutation of the sequence between positions 378 and 399 eliminated sensitivity. The destabilizing effect of IL-10 was relatively selective, as the stability of chimeric CAT mRNAs was not modulated in cells treated with IFN-gamma or IL-4.  相似文献   

13.
Early host responses to viral infection rapidly induce an antiviral gene expression program that limits viral replication and recruits sentinel cells of the innate immune system. These responses are mediated by cytokines. The mRNAs that encode cytokines typically harbor destabilizing adenine- and uridine-rich elements (AREs) that direct their constitutive degradation in the cytoplasm. In response to a variety of signals, including viral infection, small pools of cytoplasmic ARE-mRNAs are rapidly stabilized and translated. Thus, mRNA stability plays a key role in antiviral gene expression. Intriguingly, recent studies have identified viral proteins that specifically target ARE-mRNAs for stabilization, suggesting that certain proteins encoded by ARE-mRNAs may be advantageous for infection. Here, we discuss the development of a suite of sensitive and complementary assays to monitor ARE-mRNA turnover. These include luciferase- and destabilized-GFP-based assays that can be adapted for high-throughput screening applications.  相似文献   

14.
15.
16.
17.
To identify regulators of AU-rich element (ARE)-dependent mRNA turnover we have followed a genetic approach using a mutagenized cell line (slowC) that fails to degrade cytokine mRNA. Accordingly, a GFP reporter construct whose mRNA is under control of the ARE from interleukin-3 gives an increased fluorescence signal in slowC. Here we describe rescue of slowC by a retroviral cDNA library. Flow cytometry allowed us to isolate revertants with reconstituted rapid mRNA decay. The cDNA was identified as butyrate response factor-1 (BRF1), encoding a zinc finger protein homologous to tristetraprolin. Mutant slowC carries frame-shift mutations in both BRF1 alleles, whereas slowB with intermediate decay kinetics is heterozygous. By use of small interfering (si)RNA, independent evidence for an active role of BRF1 in mRNA degradation was obtained. In transiently transfected NIH 3T3 cells, BRF1 accelerated mRNA decay and antagonized the stabilizing effect of PI3-kinase, while mutation of the zinc fingers abolished both function and ARE-binding activity. This approach, which identified BRF1 as an essential regulator of ARE-dependent mRNA decay, should also be applicable to other cis-elements of mRNA turnover.  相似文献   

18.
19.
20.
Renal mesangial cells express high levels of matrix metalloproteinase 9 (MMP-9) in response to inflammatory cytokines such as interleukin (IL)-1 beta. We demonstrate here that the stable ATP analog adenosine 5'-O-(thiotriphosphate) (ATP gamma S) potently amplifies the cytokine-induced gelatinolytic content of mesangial cells mainly by an increase in the MMP-9 steady-state mRNA level. A Luciferase reporter gene containing 1.3 kb of the MMP-9 5'-promoter region showed weak responses to ATP gamma S but conferred a strong ATP-dependent increase in Luciferase activity when under the additional control of the 3'-untranslated region of MMP-9. By in vitro degradation assay and actinomycin D experiments we found that ATP gamma S potently delayed the decay of MMP-9 mRNA. Gel-shift and supershift assays demonstrated that three AU-rich elements (AREs) present in the 3'-untranslated region of MMP-9 are constitutively bound by complexes containing the mRNA stabilizing factor HuR. The RNA binding of these complexes was markedly increased by ATP gamma S. Mutation of each ARE element strongly impaired the RNA binding of the HuR containing complexes. Reporter gene assays revealed that mutation of one ARE did not affect the stimulatory effects by ATP gamma S, but mutation of all three ARE motifs caused a loss of ATP-dependent increase in luciferase activity without affecting IL-1 beta-inducibility. By confocal microscopy we demonstrate that ATP gamma S increased the nucleo cytoplasmic shuttling of HuR and caused an increase in the cytosolic HuR level as shown by cell fractionation experiments. Together, our results indicate that the amplification of MMP-9 expression by extracellular ATP is triggered through mechanisms that likely involve a HuR-dependent rise in MMP-9 mRNA stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号