首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rise in the cytoplasmic calcium concentration ([Ca(2+)](i)) is a key event for insulin exocytosis. We have recently found that the 'early [Ca(2+)](i) response' in single ob/ob mouse beta-cells is reproduced during consecutive glucose stimulations. It, therefore, appears that the response pattern is a characteristic of the individual beta-cell. We have now investigated if a cell-specific [Ca(2+)](i) response is a general phenomenon in rodent beta-cells, and if it can be observed when cells are functionally coupled. With the use of the fura-2 technique, we have studied the 'early [Ca(2+)](i) response' in single dispersed beta-cells, in beta-cell clusters of different size and in intact islets from the ob/ob mouse during repeated glucose stimulation (20mM). beta-Cells from lean mouse and rat, and intact islets from lean mouse were also investigated. Significant correlations between the first and second stimulation were found for the parameters lag-time for Ca(2+) rise (calculated as the time from start of stimulation of the cell until the first value above an extrapolated baseline), nadir of initial lowering (difference between the baseline and lowest [Ca(2+)](i) value), and peak height (difference between baseline and the highest [Ca(2+)](i) value of the first calcium peak) in single dispersed beta-cells, in 'single beta-cell within a small cluster', in clusters of medium and large size, and in single dispersed beta-cells from lean mouse and rat. The lag-times for Ca(2+) rise and peak heights were correlated within the pairs of stimulation also in intact ob/ob islets. In summary, despite a large heterogeneity of the 'early [Ca(2+)](i) response' among individual cells, the lag-time for [Ca(2+)](i) rise, the nadir of initial lowering and the height of the first peak response can be identified as cell-specific markers in beta-cells.  相似文献   

2.
Using clonal insulin-secreting BRIN-BD11 cells, we have assessed whether the graded response of the whole cell population to glucose can be accounted for by a dose-dependent recruitment of individual cells, an amplification of the response of the recruited cells or both. Cytosolic free Ca(2+) concentration ([Ca(2+)](i)) is an established index of beta-cell function. We used fura-2 microfluorescence techniques to assess the [Ca(2+)](i) responsiveness of single BRIN-BD11 cells to glucose and other secretagogues. Glucose (1-16.7 mM) evoked oscillatory [Ca(2+)](i) rises in these cells resembling those found in parental rat pancreatic beta-cells. The percentage of glucose-responsive cells was 11% at 1 mM and increased to 40-70% at 3-16.7 mM glucose, as assessed by a single-stimulation protocol. This profile was unrelated to possible differences in the cell cycle, as inferred from experiments where the cultured cells were synchronized by a double thymidine block protocol. Individual cells exhibited variable sensitivities to glucose (threshold range: 1-5 mM) and a variable dose-dependent amplification of the [Ca(2+)](i) responses (EC(50) range: 2-10 mM), as assessed by a multiple-stimulation protocol. Glyceraldehyde and alpha-ketoisocaproic acid had glucose-like effects on [Ca(2+)](i). The data support a mixed model for the activation of insulin-secreting cells. Specifically, the graded secretory response of the whole cell population is likely to reflect both a recruitment of individual cells with different sensitivities to glucose and a dose-dependent amplification of the response of the recruited cells.  相似文献   

3.
The mechanisms by which glucose may affect protein kinase C (PKC) activity in the pancreatic islet beta-cell are presently unclear. By developing adenovirally expressed chimeras encoding fusion proteins between green fluorescent protein and conventional (betaII), novel (delta), or atypical (zeta) PKCs, we show that glucose selectively alters the subcellular localization of these enzymes dynamically in primary islet and MIN6 beta-cells. Examined by laser scanning confocal or total internal reflection fluorescence microscopy, elevated glucose concentrations induced oscillatory translocations of PKCbetaII to spatially confined regions of the plasma membrane. Suggesting that increases in free cytosolic Ca(2+) concentrations ([Ca(2+)](c)) were primarily responsible, prevention of [Ca(2+)](c) increases with EGTA or diazoxide completely eliminated membrane recruitment, whereas elevation of cytosolic [Ca(2+)](c) with KCl or tolbutamide was highly effective in redistributing PKCbetaII both to the plasma membrane and to the surface of dense core secretory vesicles. By contrast, the distribution of PKCdelta.EGFP, which binds diacylglycerol but not Ca(2+), was unaffected by glucose. Measurement of [Ca(2+)](c) immediately beneath the plasma membrane with a ratiometric "pericam," fused to synaptic vesicle-associated protein-25, revealed that depolarization induced significantly larger increases in [Ca(2+)](c) in this domain. These data demonstrate that nutrient stimulation of beta-cells causes spatially and temporally complex changes in the subcellular localization of PKCbetaII, possibly resulting from the generation of Ca(2+) microdomains. Localized changes in PKCbetaII activity may thus have a role in the spatial control of insulin exocytosis.  相似文献   

4.
In addition to promoting insulin secretion, an increase in cytosolic Ca(2+) triggered by glucose has been shown to be crucial for spreading of beta-cells attached on extracellular matrix (804G matrix). Calpains are Ca(2+)-dependent cysteine proteases involved in an extended spectrum of cellular responses, including cytoskeletal rearrangements and vesicular trafficking. The present work aimed to assess whether calpain is also implicated in the process of Ca(2+)-induced insulin secretion and spreading of rat pancreatic beta-cells. The results indicate calpain dependency of beta-cell spreading on 804G matrix. Indeed, treatment with three distinct calpain inhibitors (N-Ac-Leu-Leu-norleucinal, calpeptin, and ethyl(+)-(2S,3S)-3-[(S)-3-methyl-1-(3-methylbutylcarbamoyl)butyl-carbamoyl]-2-ox-iranecarboxylate) inhibited cell spreading induced by glucose and KCl, whereas cell attachment was not significantly modified. Calpain inhibitors also suppressed glucose- and KCl-stimulated insulin secretion without affecting insulin synthesis. Washing the inhibitor out of the cell culture restored spreading on 804G matrix and insulin secretory response after 24 h. In addition, incubation with calpeptin did not affect insulin secretory response to mastoparan that acts on exocytosis downstream of intracellular calcium [Ca(2+)]i. Finally, calpeptin was shown to affect the [Ca(2+)]i response to glucose but not to KCl. In summary, the results show that inhibition of calpain blocks spreading and insulin secretion of primary pancreatic beta-cells. It is therefore suggested that calpain could be a mediator of Ca(2+)-induced-insulin secretion and beta-cell spreading.  相似文献   

5.
Liang K  Du W  Zhu W  Liu S  Cui Y  Sun H  Luo B  Xue Y  Yang L  Chen L  Li F 《The Journal of biological chemistry》2011,286(45):39537-39545
The development of insulin-dependent diabetes mellitus (IDDM) results from the selective destruction of pancreatic beta-cells. Both humans and spontaneous models of IDDM, such as NOD mice, have an extended pre-diabetic stage. Dynamic changes in beta-cell mass and function during pre-diabetes, such as insulin hyper-secretion, remain largely unknown. In this paper, we evaluated pre-diabetic female NOD mice at different ages (6, 10, and 14 weeks old) to illustrate alterations in beta-cell mass and function as disease progressed. We found an increase in beta-cell mass in 6-week-old NOD mice that may account for improved glucose tolerance in these mice. As NOD mice aged, beta-cell mass progressively reduced with increasing insulitis. In parallel, secretory ability of individual beta-cells was enhanced due to an increase in the size of slowly releasable pool (SRP) of vesicles. Moreover, expression of both SERCA2 and SERCA3 genes were progressively down-regulated, which facilitated depolarization-evoked secretion by prolonging Ca(2+) elevation upon glucose stimulation. In summary, we propose that different mechanisms contribute to the insulin hyper-secretion at different ages of pre-diabetic NOD mice, which may provide some new ideas concerning the progression and management of type I diabetes.  相似文献   

6.
Chronic hyperglycemia is known to lead to a progressively further impaired insulin response and to hasten the development of complications in patients with type 2 diabetes, a notion referred as glucose toxicity. T-1095, a derivative of phlorizin, is a newly developed oral hypoglycemic agent that acts as a specific inhibitor of renal Na(+)-glucose co-transporters, reducing circulating blood glucose levels by promoting glucose excretion into urine. The effects of glycemic improvement by T-1095 on secretory function and cytoplasmic calcium response in pancreatic beta-cells were investigated using spontaneously diabetic GK rats. After four weeks of treatment with T-1095 (age 4 to 8 week rats), serum glucose and HbA1c levels were significantly improved (serum glucose level, GK vs. GK T-1095, 277.3 +/- 11.8 vs. 204.7 +/- 6.4 mg/dl; HbA1c level, GK vs. GK T-1095, 6.2 +/- 0.2 vs. 4.8 +/- 0.1 %). Insulin secretion induced by 16.7 mM glucose was also significantly increased in the T-1095-treated group compared to the untreated group. The [Ca(2+)]i response induced by 16.7 mM glucose in GK beta-cells was characterized by the loss of the steep first peak of [Ca(2+)]i elevation, and the lost first peak of [Ca(2+)]i reappeared in T-1095-treated beta-cells in 32 of 34 observations. In T-1095-treated beta-cells, the time lag to peak [Ca(2+)]i levels in the 16.7 mM glucose stimulation was significantly reduced (259.1 +/- 15.3 sec, p < 0.01) compared to untreated GK rats (524.7 +/- 52.9 sec). Thus, improvement of hyperglycemia by T-1095 ameliorates beta-cell function by relieving [Ca(2+)]i response.  相似文献   

7.
Glucose stimulation of individual pancreatic beta-cells is associated with a rise of the cytoplasmic Ca2+ concentration ([Ca2+]i) manifested either as large amplitude oscillations (0.2-0.5/min) or as a sustained increase. Determinants for the transitions between the basal and the two stimulated states have now been studied using dual-wavelength fluorometric measurements on individual ob/ob mouse beta-cells loaded with the Ca2+ indicator Fura-2. The transition from the basal state to large amplitude oscillations was induced by raising the glucose concentration to 7 mM or above. The frequencies and shapes of the [Ca2+]i cycles remained largely unaffected when raising glucose as high as 40 mM. However, in some cells the oscillatory pattern was transformed into a sustained increase of [Ca2+]i at high glucose concentrations. Although the peak values for the oscillations exceeded the steady-state increase, the time average [Ca2+]i was higher during the latter phase. Both types of glucose-induced transitions were facilitated by the presence of 1-100 nM glucagon. Protein kinase C activation by 10 nM of the phorbol ester TPA resulted in a transformation of the glucose-induced oscillations into a sustained increase of [Ca2+]i but the levels reached were considerably lower than obtained with glucose alone. It is concluded that the glucose sensing of the individual beta-cell is based on sudden transitions between steady-state and oscillating cytoplasmic Ca2+. It is these transitions rather than alterations of the oscillatory characteristics which determine the average [Ca2+]i regulating insulin release.  相似文献   

8.
We studied acute changes of secretory vesicle pH in pancreatic beta-cells with a fluorescent pH indicator, lysosensor green DND-189. Fluorescence was decreased by 0.66 +/- 0.10% at 149 +/- 16 s with 22.2 mM glucose stimulation, indicating that vesicular pH was alkalinized by approximately 0.016 unit. Glucose-responsive pH increase was observed when cytosolic Ca2+ influx was blocked but disappeared when an inhibitor of glycolysis or mitochondrial ATP synthase was present. Glutamate dimethyl ester (GME), a plasma membrane-permeable analog of glutamate, potentiated glucose-stimulated insulin secretion at 5 mM without changing cellular ATP content or cytosolic Ca2+ concentration ([Ca2+]). Application of GME at basal glucose concentration decreased DND-189 fluorescence by 0.83 +/- 0.19% at 38 +/- 2 s. These results indicated that the acutely alkalinizing effect of glucose on beta-cell secretory vesicle pH was dependent on glucose metabolism but independent of modulations of cytosolic [Ca2+]. Moreover, glutamate derived from glucose may be one of the mediators of this alkalinizing effect of glucose, which may have potential relevance to the alteration of secretory function by glutamate.  相似文献   

9.
Alteration of pancreatic beta-cell survival and Preproinsulin gene expression by prolonged hyperglycemia may result from increased c-MYC expression. However, it is unclear whether c-MYC effects on beta-cell function are compatible with its proposed role in glucotoxicity. We therefore tested the effects of short-term c-MYC activation on key beta-cell stimulus-secretion coupling events in islets isolated from mice expressing a tamoxifen-switchable form of c-MYC in beta-cells (MycER) and their wild-type littermates. Tamoxifen treatment of wild-type islets did not affect their cell survival, Preproinsulin gene expression, and glucose stimulus-secretion coupling. In contrast, tamoxifen-mediated c-MYC activation for 2-3 days triggered cell apoptosis and decreased Preproinsulin gene expression in MycER islets. These effects were accompanied by mitochondrial membrane hyperpolarization at all glucose concentrations, a higher resting intracellular calcium concentration ([Ca(2+)](i)), and lower glucose-induced [Ca(2+)](i) rise and islet insulin content, leading to a strong reduction of glucose-induced insulin secretion. Compared with these effects, 1-wk culture in 30 mmol/l glucose increased the islet sensitivity to glucose stimulation without reducing the maximal glucose effectiveness or the insulin content. In contrast, overnight exposure to a low H(2)O(2) concentration increased the islet resting [Ca(2+)](i) and reduced the amplitude of the maximal glucose response as in tamoxifen-treated MycER islets. In conclusion, c-MYC activation rapidly stimulates apoptosis, reduces Preproinsulin gene expression and insulin content, and triggers functional alterations of beta-cells that are better mimicked by overnight exposure to a low H(2)O(2) concentration than by prolonged culture in high glucose.  相似文献   

10.
[Ca(2+)](i) and electrical activity were compared in isolated beta-cells and islets using standard techniques. In islets, raising glucose caused a decrease in [Ca(2+)](i) followed by a plateau and then fast (2-3 min(-1)), slow (0.2-0.8 min(-1)), or a mixture of fast and slow [Ca(2+)](i) oscillations. In beta-cells, glucose transiently decreased and then increased [Ca(2+)](i), but no islet-like oscillations occurred. Simultaneous recordings of [Ca(2+)](i) and electrical activity suggested that differences in [Ca(2+)](i) signaling are due to differences in islet versus beta-cell electrical activity. Whereas islets exhibited bursts of spikes on medium/slow plateaus, isolated beta-cells were depolarized and exhibited spiking, fast-bursting, or spikeless plateaus. These electrical patterns in turn produced distinct [Ca(2+)](i) patterns. Thus, although isolated beta-cells display several key features of islets, their oscillations were faster and more irregular. beta-cells could display islet-like [Ca(2+)](i) oscillations if their electrical activity was converted to a slower islet-like pattern using dynamic clamp. Islet and beta-cell [Ca(2+)](i) changes followed membrane potential, suggesting that electrical activity is mainly responsible for the [Ca(2+)] dynamics of beta-cells and islets. A recent model consisting of two slow feedback processes and passive endoplasmic reticulum Ca(2+) release was able to account for islet [Ca(2+)](i) responses to glucose, islet oscillations, and conversion of single cell to islet-like [Ca(2+)](i) oscillations. With minimal parameter variation, the model could also account for the diverse behaviors of isolated beta-cells, suggesting that these behaviors reflect natural cell heterogeneity. These results support our recent model and point to the important role of beta-cell electrical events in controlling [Ca(2+)](i) over diverse time scales in islets.  相似文献   

11.
Pancreatic beta-cells store insulin in secretory granules that undergo exocytosis upon glucose stimulation. Sustained stimulation depletes beta-cells of their granule pool, which must be quickly restored. However, the factors promoting rapid granule biogenesis are unknown. Here we show that beta-cell stimulation induces the nucleocytoplasmic translocation of polypyrimidine tract-binding protein (PTB). Activated cytosolic PTB binds and stabilizes mRNAs encoding proteins of secretory granules, thus increasing their translation, whereas knockdown of PTB expression by RNA interference (RNAi) results in the depletion of secretory granules. These findings may provide insight for the understanding and treatment of diabetes, in which insulin secretion is typically impaired.  相似文献   

12.
Islet amyloid polypeptide (IAPP) is a major component of amyloid deposition in pancreatic islets of patients with type 2 diabetes. It is known that IAPP can inhibit glucose-stimulated insulin secretion; however, the mechanisms of action have not yet been established. In the present work, using a rat pancreatic beta-cell line, INS1E, we have created an in vitro model that stably expressed human IAPP gene (hIAPP cells). These cells showed intracellular oligomers and a strong alteration of glucose-stimulated insulin and IAPP secretion. Taking advantage of this model, we investigated the mechanism by which IAPP altered beta-cell secretory response and contributed to the development of type 2 diabetes. We have measured the intracellular Ca(2+) mobilization in response to different secretagogues as well as mitochondrial metabolism. The study of calcium signals in hIAPP cells demonstrated an absence of response to glucose and also to tolbutamide, indicating a defect in ATP-sensitive potassium (K(ATP)) channels. Interestingly, hIAPP showed a greater maximal respiratory capacity than control cells. These data were confirmed by an increased mitochondrial membrane potential in hIAPP cells under glucose stimulation, leading to an elevated reactive oxygen species level as compared with control cells. We concluded that the hIAPP overexpression inhibits insulin and IAPP secretion in response to glucose affecting the activity of K(ATP) channels and that the increased mitochondrial metabolism is a compensatory response to counteract the secretory defect of beta-cells.  相似文献   

13.
Glucose stimulation of pancreatic beta-cells causes oscillatory influx of Ca2+, leading to pulsatile insulin secretion. We have proposed that this is due to oscillations of glycolysis and the ATP/ADP ratio, which modulate the activity of ATP-sensitive K+ channels. We show here that dihydroxyacetone, a secretagogue that feeds into glycolysis below the putative oscillator phosphofructokinase, could cause a single initial peak in cytoplasmic free Ca2+ ([Ca2+]i) but did not by itself cause repeated oscillations in [Ca2+]i in mouse pancreatic beta-cells. However, in the presence of a substimulatory concentration of glucose (4 mm), dihydroxyacetone induced [Ca2+]i oscillations. Furthermore, these oscillations correlated with oscillations in the ATP/ADP ratio, as seen previously with glucose stimulation. Insulin secretion in response to dihydroxyacetone was transient in the absence of glucose but was considerably enhanced and somewhat prolonged in the presence of a substimulatory concentration of glucose, in accordance with the enhanced [Ca2+]i response. These results are consistent with the hypothesized role of phosphofructokinase as the generator of the oscillations. Dihydroxyacetone may affect phosphofructokinase by raising the free concentration of fructose 1,6-bisphosphate to a critical level at which it activates the enzyme autocatalytically, thereby inducing the pulses of phosphofructokinase activity that cause the metabolic oscillations.  相似文献   

14.
Phogrin, a 60/64-kDa integral membrane protein of dense-core granules in neuroendocrine cells, is phosphorylated in a Ca(2+)-sensitive manner in response to secretagogue stimulation of pancreatic beta-cells. Phosphorylation of the phogrin cytosolic domain by beta-cell homogenates was Ca(2+)-independent but stimulated by cAMP. Recombinant protein kinase A (PKA) could phosphorylate phogrin directly. High performance liquid chromatography analysis of tryptic phosphopeptides, combined with site-directed mutagenesis of candidate sites, revealed the presence of two phosphorylation sites at Ser-680 and Thr-699, located in the juxtamembrane region between the transmembrane span and the protein-tyrosine phosphatase homology domain of phogrin. Full-length wild-type phogrin, as well as mutant versions where Ser-680 and Thr-699 had been replaced either by alanines or by aspartic acid residues, were targeted to secretory granules in transfected AtT20 neuroendocrine cells. Stimulation of these cells with a range of secretagogues, including K(+), BaCl(2), and forskolin, demonstrated that the in vivo phosphorylation sites are the same as those identified in vitro. In MIN6 beta-cells, the PKA inhibitor H-89 prevented Ca(2+)-dependent phogrin phosphorylation in response to glucose, suggesting that Ca(2+) exerts its effect on phogrin phosphorylation through regulating the activity of PKA.  相似文献   

15.
To investigate whether exertion changes beta-cell reactivity to glucose stimulation and to characterize the beta-cell response to glucose in humans, we performed four sequential 90-min hyperglycemic clamps (7, 11, 20, and 35 mM). Concentrations of hormones and metabolites involved in glucoregulation were measured. Metabolic rate and substrate utilization were studied by indirect calorimetry. Studies were performed without prior exercise, as well as 2 and 48 h after 60 min of bicycle exercise at 150 W. We found 1) a progressive increase in insulin concentrations reaching 1,092 +/- 135 microU/ml with increasing glucose levels, 2) linear relationships between glucose concentrations and concentrations of C-peptide (r = 0.931 +/- 0.008) and proinsulin (r = 0.952 +/- 0.009),3) increased glucose oxidation with increasing glucose uptake, 4) increased plasma norepinephrine, O2 uptake, and beta-hydroxybutyrate at greater than or equal to 20 mM glucose, and 5) no change in beta-cell response or glucose-induced thermogenesis after one bout of exercise despite no compensating changes in plasma concentrations of hormones or metabolites. We conclude that the beta-cell has a very large secretory potential. Secretion of the beta-cell increases linearly with prolonged, graded hyperglycemia. The processing of proinsulin is unchanged during prolonged beta-cell stimulation. In addition, hyperglycemia and sympathetic nervous activity induced by hyperinsulinemia enhance metabolic rate and ketone body production. Finally, a single bout of exercise does not influence either the beta-cell response to intravenous glucose or glucose-induced thermogenesis.  相似文献   

16.
Ultrastructural and quantitative immunocytochemical studies of rat pancreata were carried out 1 month after adult thymectomy. The proportions of insulin-, glucagon-, and somatostatin-immunoreactive cells in the pancreas were estimated on paraffin sections using the unlabelled peroxidase-antiperoxidase method. Relative islet volume, islet size and number were determined on hematoxylin and eosin stained sections. A moderate increase of the islet volume on account of size was found in the pancreas of the thymectomized rats. The proportion of insulin-immunoreactive cells was also elevated. Ultrastructural studies showed a rich supply of secretory granules in most beta-cells. Mixed beta-endocrine-acinar cells were often observed. Mitotic figures were found in single beta-cells. The blood glucose level was in the normal range. The findings suggest a moderate stimulation of beta-cell secretory activity after thymectomy which is not associated with elevated blood glucose levels.  相似文献   

17.
Mitochondria shape Ca(2+) signaling and exocytosis by taking up calcium during cell activation. In addition, mitochondrial Ca(2+) ([Ca(2+)](M)) stimulates respiration and ATP synthesis. Insulin secretion by pancreatic beta-cells is coded mainly by oscillations of cytosolic Ca(2+) ([Ca(2+)](C)), but mitochondria are also important in excitation-secretion coupling. Here, we have monitored [Ca(2+)](M) in single beta-cells within intact mouse islets by imaging bioluminescence of targeted aequorins. We find an increase of [Ca(2+)](M) in islet-cells in response to stimuli that induce either Ca(2+) entry, such as extracellular glucose, tolbutamide or high K(+), or Ca(2+) mobilization from the intracellular stores, such as ATP or carbamylcholine. Many cells responded to glucose with synchronous [Ca(2+)](M) oscillations, indicating that mitochondrial function is coordinated at the whole islet level. Mitochondrial Ca(2+) uptake in permeabilized beta-cells increased exponentially with increasing [Ca(2+)], and, particularly, it became much faster at [Ca(2+)](C)>2 microM. Since the bulk [Ca(2+)](C) signals during stimulation with glucose are smaller than 2 microM, mitochondrial Ca(2+) uptake could be not uniform, but to take place preferentially from high [Ca(2+)](C) microdomains formed near the mouth of the plasma membrane Ca(2+) channels. Measurements of mitochondrial NAD(P)H fluorescence in stimulated islets indicated that the [Ca(2+)](M) changes evidenced here activated mitochondrial dehydrogenases and therefore they may modulate the function of beta-cell mitochondria. Diazoxide, an activator of K(ATP), did not modify mitochondrial Ca(2+) uptake.  相似文献   

18.
T Yada  M Kakei  H Tanaka 《Cell calcium》1992,13(1):69-76
Since it was reported that glucose stimulation initially lowers as well as subsequently raises the cytosolic free calcium concentration [( Ca2+]i) in pancreatic islet cells from hyperglycemic ob/ob mice, it has been argued whether the lowering of [Ca2+]i is physiological or artifactual. In the present study, [Ca2+]i in single pancreatic beta-cells from normal rats was measured by Fura-2 microfluorometry. Following elevation of the glucose concentration from 2.8 mM (basal) to 16.7 mM, a bimodal change in [Ca2+]i, an initial decrease and subsequent increase, was demonstrated. When the basal glucose concentration was raised to 5.6 mM, the stimulation with 16.7 mM glucose also induced the decrease in [Ca2+]i in the majority of the cells, though the amplitude of the decrease was reduced. An elevation of the glucose concentration from 2.8 to 5.6 mM induced the decrease in [Ca2+]i but not usually the increase in [Ca2+]i. Removal of extracellular Ca2+ eliminated the increase in [Ca2+]i without affecting the decrease in [Ca2+]i. Thus, the decrease and increase in [Ca2+]i were clearly dissociated under certain conditions. In contrast, mannoheptulose (an inhibitor of glucose metabolism) inhibited both the decrease and increase in [Ca2+]i. These results demonstrate that the glucose-induced bimodal change in [Ca2+]i is a physiological response of islet beta-cells, and that the decrease and increase in [Ca2+]i are generated by mutually-independent mechanisms which are operated through glucose metabolism by islet beta-cells.  相似文献   

19.
Pancreatic beta-cells have an intrinsic oscillatory Ca2+ activity supposed to be synchronized among the islets by cytoplasmic Ca2+ transients elicited by nonadrenergic, noncholinergic (NANC) neurons. To improve the understanding of this process, the cytoplasmic Ca2+ concentration ([Ca2+]i) was measured in two insulin-releasing cell lines using dual wavelength microfluorometry and the indicator fura-2. INS-1 cells but not RINm5F cells were found to generate transients of [Ca2+]i in the presence of the Ca2+ channel blocker methoxyverapamil. These transients differed from those occurring in native beta-cells persisting in the presence of thapsigargin or during prolonged exposure to ATP. Moreover, the [Ca2+]i transients were poorly synchronized whether or not the INS-1 cells had physical contact. If appearing in native beta-cells, the type of [Ca2+]i transients now observed may interfere with the coordination of the beta-cell rhythmicity evoked by NANC neurons.  相似文献   

20.
Influence of basal glucose concentration on the response evoked by subsequent stimulation with the sugar, was evaluated by investigating changes in free cytoplasmic Ca2+ concentration, [Ca2+]i, and insulin release, using beta-cells isolated from obese hyperglycemic mice. When increasing the glucose concentration from 0 to either 11 or 20 mM, there was a transient decrease in both [Ca2+]i and insulin release. The decrease was followed by a pronounced increase in both of the parameters. When increasing the basal glucose concentration, the initial decrease gradually disappeared, being abolished already at 5 mM of the sugar and the subsequent increase appeared more rapidly. It is suggested that the observed decrease in [Ca2+]i and thereby insulin release reflects a phenomenon associated with fuel deprived beta-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号