首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 877 毫秒
1.
The cDNA encoding the goldfish (Carassius auratus) prolactin was expressed in Escherichia coli using the pRSETA expression vector. The recombinant goldfish prolactin (gfPRL) produced was a fusion protein containing a hexahistidyl sequence, which facilitated its purification on a Ni2+ column. The fusion protein was overexpressed in the bacteria as inclusion bodies and was successfully purified under denaturing conditions by one-step affinity chromatography. Repeated immunization of rabbits against the purified recombinant gfPRL allowed the production of a high-titer polyclonal antiserum. The IgG fraction of the antiserum was isolated on an immobilized Protein A–agarose column. The antibody recognized recombinant gfPRL, but not recombinant goldfish growth hormone (gfGH) or goldfish somatolactin (gfSL) on Western analyses. The purified antibody was able to recognize gfPRL, but not gfGH or gfSL, in a non-competitive antigen-capture ELISA. The assay was applied in monitoring the purification of native PRL from goldfish pituitaries.  相似文献   

2.
Complementary DNA regions coding for two different mature goldfish growth hormones (gfGH-I and gfGH-II) with four and five cysteine residues were cloned into the bacterial expression vector, pRSETA. The recombinant gfGH-I (five cysteines) and -II (four cysteines) were produced in Escherichia coli as the fusion proteins carrying N-terminal 6XHis tag, which facilitates purification by using metal chelating affinity chromatography under denaturing condition with urea. The recombinant hormones were further refolded by gradually removing the urea. Native gfGH was also purified from goldfish pituitary glands and served as a positive control in the present study. The native and recombinant hormones were tested in goldfish hepatic radioreceptor assay and in vitro Spi 2.1 promoter activation assay. Our results showed that the two recombinant gfGHs are biologically active, and they have similar biological activities despite their having different cysteine contents.  相似文献   

3.
Activation of the muscarinic acetylcholine receptors requires agonist binding followed by a conformational change, but the ligand binding and conformation-switching residues have not been completely identified. Systematic alanine-scanning mutagenesis has been used to assess residues 142-164 in transmembrane helix 4 and 402-421 in transmembrane helix 7 of the M(1) muscarinic acetylcholine receptor. Several inward-facing amino acid side chains in the exofacial parts of transmembrane helices 4 and 7 contribute to acetylcholine binding. Alanine substitution of the aromatic residues in this group reduced signaling efficacy, suggesting that they may form part of a charge-stabilized aromatic cage, which triggers rotation and movement of the transmembrane helices. The mutation of adjacent residues modulated receptor activation, either reducing signaling or causing constitutive activation. In the buried endofacial section of transmembrane helix 7, alanine substitution mutants of the conserved NSXXNPXXY motif displayed strongly reduced signaling efficacy, despite having increased or unchanged acetylcholine affinity. These residues may have dual functions, forming intramolecular contacts that stabilize the receptor in the inactive ground state, but that are broken, allowing them to form new intramolecular bonds in the activated state. This conformational rearrangement is critical to produce a G protein binding site and may represent a key mechanism of receptor activation.  相似文献   

4.
Oncostatin M is a polypeptide cytokine having unique structure and diverse biological activities, including the ability to inhibit growth of certain cultured tumor cells. Here we have determined the disulfide bonding pattern of recombinant oncostatin M and have used site-directed mutagenesis to identify regions of this molecule necessary for receptor binding and growth inhibitory activities. Two intramolecular disulfide bonds, C6-C127 and C49-C167, were identified in recombinant oncostatin M. Analysis of mutations at each of the five cysteines in oncostatin M indicated that mutants C49S and C167S were inactive (less than 1/10 wild type activity) in growth inhibitory assays and radioreceptor assays. Carboxyl-terminal deletion mutations terminating at S185 and beyond were active, but further shortening abolished activity in both assays. Two deletion mutants proximal to C49 (delta 22-36 and delta 44-47) and insertion mutant GAG77 also were inactive. One deletion mutant, delta 87-90, had significantly (approximately 3-fold) increased activities in both growth inhibitory assays and radioreceptor assays. A potential amphiphilic domain was identified beginning at C167 and extending toward the carboxyl terminus. Two mutants having altered hydrophobic residues within this domain (F176G and F184G) were inactive, suggesting that these residues are required for proper conformation of the receptor binding site. Taken together, these results indicate that biological activity of oncostatin M requires discontinuous regions of the molecule, including residues near the essential disulfide bond, C49-C167, and within a putative amphiphilic helix at the carboxyl terminus. Oncostatin M thus belongs to a growing family of cytokines whose interactions with their respective receptors are mediated in part by known or predicted carboxyl-terminal amphiphilic helices.  相似文献   

5.
Several times throughout the year, changes in serum growth hormone (GH) levels over a 24-h period were determined in goldfish maintained under photoperiods and temperatures simulating natural (Edmonton) environmental conditions. In the goldfish a reproducible daily rhythm in circulating GH levels was not present at any time of the year. The average serum GH level over the daily sampling period and the instantaneous relative growth rate in goldfish sampled at the various times of the year were also determined. The highest mean daily serum GH levels were found in March and June, whereas the lowest level was found in goldfish sampled in November. Changes in mean daily serum GH levels were closely correlated to seasonal changes in daylength. The highest growth rate was found in goldfish sampled in July, whereas the lowest growth rates were found in February and March. Female goldfish exhibited a faster growth rate than male goldfish at certain times of the year, but sexual differences in growth rate were correlated with sexual differences in serum GH levels only in November when female goldfish had a higher serum GH level than male goldfish.  相似文献   

6.
7.
A systematic mutational analysis of human interferon-beta-1a (IFN-beta) was performed to identify regions on the surface of the molecule that are important for receptor binding and for functional activity. The crystal structure of IFN-beta-1a was used to design a panel of 15 mutant proteins, in each of which a contiguous group of 2-8 surface residues was mutated, in most instances to alanine. The mutants were analyzed for activity in vitro in antiviral and in antiproliferation assays, and for their ability to bind to the type I IFN (ifnar1/ifnar2) receptor on Daudi cells and to a soluble ifnar2 fusion protein (ifnar2-Fc). Abolition of binding to ifnar2-Fc for mutants A2, AB1, AB2, and E established that the ifnar2 binding site on IFN-beta comprises parts of the A helix, the AB loop, and the E helix. Mutations in these areas, which together define a contiguous patch of the IFN-beta surface, also resulted in reduced affinity for binding to the receptor on cells and in reductions in activity of 5-50-fold in functional assays. A second receptor interaction site, concluded to be the ifnar1 binding site, was identified on the opposite face of the molecule. Mutations in this region, which encompasses parts of the B, C, and D helices and the DE loop, resulted in disparate effects on receptor binding and on functional activity. Analysis of antiproliferation activity as a function of the level of receptor occupancy allowed mutational effects on receptor activation to be distinguished from effects on receptor binding. The results suggest that the binding energy from interaction of IFN-beta with ifnar2 serves mainly to stabilize the bound IFN/receptor complex, whereas the binding energy generated by interaction of certain regions of IFN-beta with ifnar1 is not fully expressed in the observed affinity of binding but instead serves to selectively stabilize activated states of the receptor.  相似文献   

8.
In haloarchaea, sensory rhodopsin II (SRII) mediates a photophobic response to avoid photo-oxidative damage in bright light. Upon light activation the receptor undergoes a conformational change that activates a tightly bound transducer molecule (HtrII), which in turn by a chain of homologous reactions transmits the signal to the chemotactic eubacterial two-component system. Here, using single-molecule force spectroscopy, we localize and quantify changes to the intramolecular interactions within SRII of Natronomonas pharaonis (NpSRII) upon NpHtrII binding. Transducer binding affected the interactions at transmembrane alpha helices F and G of NpSRII to which the transducer was in contact. Remarkably, the interactions were distributed asymmetrically and significantly stabilized alpha helix G entirely but alpha helix F only at its extracellular tip. These findings provide unique insights into molecular mechanisms that "prime" the complex for signaling, and guide the receptor toward transmitting light-activated structural changes to its cognate transducer.  相似文献   

9.
The exoloops of glycoprotein hormone receptors (GpHRs) transduce the signal generated by the ligand-ectodomain interactions to the transmembrane helices either through direct hormonal contact and/or by modulating the interdomain interactions between the hinge region (HinR) and the transmembrane domain (TMD). The ligand-induced conformational alterations in the HinRs and the interhelical loops of luteinizing hormone receptor/follicle stimulating hormone receptor/thyroid stimulating hormone receptor were mapped using exoloop-specific antibodies generated against a mini-TMD protein designed to mimic the native exoloop conformations that were created by joining the thyroid stimulating hormone receptor exoloops constrained through helical tethers and library-derived linkers. The antibody against the mini-TMD specifically recognized all three GpHRs and inhibited the basal and hormone-stimulated cAMP production without affecting hormone binding. Interestingly, binding of the antibody to all three receptors was abolished by prior incubation of the receptors with the respective hormones, suggesting that the exoloops are buried in the hormone-receptor complexes. The antibody also suppressed the high basal activities of gain-of-function mutations in the HinRs, exoloops, and TMDs such as those involved in precocious puberty and thyroid toxic adenomas. Using the antibody and point/deletion/chimeric receptor mutants, we demonstrate that changes in the HinR-exoloop interactions play an important role in receptor activation. Computational analysis suggests that the mini-TMD antibodies act by conformationally locking the transmembrane helices by means of restraining the exoloops and the juxta-membrane regions. Using GpHRs as a model, we describe a novel computational approach of generating soluble TMD mimics that can be used to explain the role of exoloops during receptor activation and their interplay with TMDs.  相似文献   

10.
We performed a series of experiments using alanine-scanning mutagenesis to locate side chains within human granulocyte colony-stimulating factor (G-CSF) that are involved in human G-CSF receptor binding. We constructed a panel of 28 alanine mutants that examined all surface exposed residues on helices A and D, as well as all charged residues on the surface of G-CSF. The G-CSF mutants were expressed in a transiently transfected mammalian cell line and quantitated by a sensitive biosensor method. We measured the activity of mutant proteins using an in vitro proliferation assay and an ELISA binding competition assay. These studies show that there is a region of five charged residues on helices A and C employed by G-CSF in binding its receptor, with the most important residue in this binding patch being Glu 19. Both wild-type G-CSF and the E19A mutant were expressed in E. coli. The re-folded proteins were found to have proliferative activities similar to the analogous proteins from mammalian cells: furthermore, biophysical analysis indicated that the E19A mutation does not cause gross structural perturbations in G-CSF. Although G-CSF is likely to signal through receptor homo-dimerization, we found no compelling evidence for a second receptor binding region. We also found no evidence of self-antagonism at high G-CSF concentrations, suggesting that, in contrast to human growth hormone (hGH) and erythropoietin (EPO), G-CSF probably does not signal via a pure 2:1 receptor ligand complex. Thus, G-CSF, while having a similar tertiary structure to hGH and EPO, uses different areas of the four helix bundle for high-affinity interaction with its receptor.  相似文献   

11.
The RNA of the Escherichia coli RNA phages is highly structured with 75% of the nucleotides estimated to take part in base-pairing. We have used enzymatic and chemical sensitivity of nucleotides, phylogenetic sequence comparison and the phenotypes of constructed mutants to develop a secondary structure model for the central region (900 nucleotides) of the group I phage MS2. The RNA folds into a number of, mostly irregular, helices and is further condensed by several long-distance interactions. There is substantial conservation of helices between the related groups I and II, attesting to the relevance of discrete RNA folding. In general, the secondary structure is thought to be needed to prevent annealing of plus and minus strand and to confer protection against RNase. Superimposed, however, are features required to regulate translation and replication. The MS2 RNA section studied here contains three translational start sites, as well as the binding sites for the coat protein and the replicase enzyme. Considering the density of helices along the RNA, it is not unexpected to find that all these sites lie in helical regions. This fact, however, does not mean that these sites are recognized as secondary structure elements by their interaction partners. This holds true only for the coat protein binding site. The other four sites function in the unfolded state and the stability of the helix in which they are contained serves to negatively control their accessibility. Mutations that stabilize helices containing ribosomal binding sites reduce their efficiency and vice versa. Comparison of homologous helices in different phage RNAs indicates that base substitutions have occurred in such a way that the thermodynamic stability of the helix is maintained. The evolution of individual helices shows several distinct size-reduction patterns. We have observed codon deletions from loop areas and shortening of hairpins by base-pair deletions from either the bottom, the middle or the top of stem structures. Evidence for the coaxial stacking of some helical segments is discussed.  相似文献   

12.
Based on phage display optimization studies with human growth hormone (GH), it is thought that the biopotency of GH cannot be increased. This is proposed to be a result of the affinity of the first receptor for hormone far exceeding that which is required to trap the hormone long enough to allow diffusion of the second receptor to form the ternary complex, which initiates signaling. We report here that despite similar site 1 kinetics to the hGH/hGH receptor interaction, the potency of porcine GH for its receptor can be increased up to 5-fold by substituting hGH residues involved in site 1 binding into pGH. Based on extensive mutations and BIAcore studies, we show that the higher potency and site 1 affinity of hGH for the pGHR is primarily a result of a decreased off-rate associated with residues in the extended loop between helices 1 and 2 that interact with the two key tryptophans Trp104 and Trp169 in the receptor binding hot spot. Our mutagenic analysis has also identified a second determinant (Lys165), which in addition to His169, restricts the ability of non-primate hormones to activate hGH receptor. The increased biopotency of GH that we observe can be explained by a model for GH receptor activation where subunit alignment is critical for effective signaling.  相似文献   

13.
The type 1 parathyroid hormore receptor (PTH1r) belongs to the class II family of G protein-coupled receptors. To delineate the sites in the PTH1r's N-terminal region, and the carboxy-core domain (transmembrane segments + extracellular loops) involved in PTH binding, we have evaluated the functional properties of 27 PTH1-secretin chimeras receptors stably expressed in HEK-293 cells. The wild type and chimeric receptors were analyzed for cell surface expression, binding for PTH and secretin, and functional responsiveness (cAMP induction) toward secretin and PTH. The expression levels of the chimeric receptors were comparable to that of the PTH1r (60-100%). The N-terminal region of PTH1r was divided into three segments that were replaced either singly or in various combinations with the homologous region of the secretin receptor (SECr). Substitution of the carboxy-terminal half (residues 105-186) of the N-terminal region of PTH1r for a SECr homologous segment did not reduced affinity for PTH but abolished signaling in response to PTH. This data indicate that receptor activation is dissociable from high affinity hormone binding in the PTH1r, and that the N-terminal region might play a critical role in the activation process. Further segment replacements in the N-termini focus on residues 105-186 and particularly residues 146-186 of PTH1r as providing critical segments for receptor activation. The data obtained suggest the existence of two distinct PTH binding sites in the PTH1r's N-terminal region: one site in the amino-terminal half (residues 1-62) (site 1) that participates in high-affinity PTH binding; and a second site of lower affinity constituted by amino acid residues scattered throughout the carboxy-terminal half (residues 105-186) (site 2). In the absence of PTH binding to site 1, higher concentrations of hormone are required to promote receptor activation. In addition, elimination of the interaction of PTH with site 2 results in a loss of signal transduction without loss of high-affinity PTH binding. Divers substitutions of the extracellular loops of the PTH1r highlight the differential role of the first- and third extracellular loop in the process of PTH1r activation after hormone binding. A chimera containing the entire extracellular domains of the PTH1r and the transmembrane + cytoplasmic domains of SECr had very low PTH binding affinity and did not signal in response to PTH. Further substitution of helix 5 of PTH1r in this chimera increased affinity for PTH that is close to the PTH affinity for the wild-type PTH1r but surprisingly, did not mediate signaling response. Additional substitutions of PTH1r's helices in various combinations emphasize the fundamental role of helix 3 and helix 6 on the activation process of the PTH1r. Overall, our studies demonstrated that several PTH1r domains contribute differentially to PTH binding affinity and signal transduction mechanism and highlight the role of the N-terminal domain and helix 3 and helix 6 on receptor activation.  相似文献   

14.
15.
Structure of the chicken growth hormone-encoding gene and its promoter region.   总被引:12,自引:0,他引:12  
M Tanaka  Y Hosokawa  M Watahiki  K Nakashima 《Gene》1992,112(2):235-239
  相似文献   

16.
17.
18.
Recent studies have revealed that G-protein-coupled receptors contain a putative cytoplasmic helical domain, helix 8. Leukotriene B4 (LTB4) receptor 1 derivatives with truncated or mutated helix 8 showed much higher LTB4 binding than wild-type (WT) receptors. Similar to the WT receptor, LTB4 promoted guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding in these mutants. Unlike the WT receptor, however, the addition of GTPgammaS did not inhibit LTB4 binding to the mutant receptors. Scatchard analyses revealed that mutants maintained high affinity for LTB4, even in the presence of excess GTPgammaS. Consistently, mutant receptors showed a more prolonged Ca2+ mobilization and cellular metabolic activation than the WT receptor. From mutational studies and three-dimensional modeling based on the structure of bovine rhodopsin, we conclude that the helix 8 of LTB4 receptor 1 plays an important role in the conformational change of the receptor to the low affinity state after G-protein activation, possibly by sensing the status of coupling Galpha subunits as GTP-bound.  相似文献   

19.
CCK receptors represent potential targets in a number of diseases. Knowledge of CCK receptor binding sites is a prerequisite for the understanding of the molecular basis for their ligand recognition, partial agonism, ligand-induced trafficking of signalling. In the current paper, we report studies from our laboratory and others which have provided new data on the molecular basis of the pharmacology and functioning of CCK1 and CCK2 receptors. It has been shown that: 1) homologous regions of the two receptors are involved in the binding site of CCK, however, positioning of CCK slightly differs in agreement with distinct pharmacophores of CCK toward the two receptors and receptor sequence variations; 2) Binding sites of most of non-peptide agonists/ antagonist are buried in the pocket formed by transmembrane helices and overlap that of CCK; Aromatic amino acids within and near the binding site, especially in helix VI, are involved in receptor activation; 4) Like for other members of family A of G-protein coupled receptors, residues of the binding sites as well as of conserved motifs such as E/DRY, NPXXY are crucial for receptor activation.  相似文献   

20.
We studied the in vitro and in vivo effects of octanoylated goldfish ghrelin peptides (gGRL-19 and gGRL-12) on luteinizing hormone (LH) and growth hormone (GH) release in goldfish. gGRL-19 and gGRL-12 at picomolar doses stimulated LH and GH release from dispersed goldfish pituitary cells in perifusion and static incubation. Incubation of pituitary cells for 2 h with 10 nM gGRL-12 and 1 or 10 nM gGRL-19 increased LH-beta mRNA expression, whereas only 10 nM gGRL-19 increased GH mRNA expression. Somatostatin-14 abolished the stimulatory effects of ghrelin on GH release from dispersed pituitary cells in perifusion and static culture. The GH secretagogue receptor antagonist d-Lys(3)-GHRP-6 inhibited the ghrelin-induced LH release, whereas no effects were found on stimulation of GH release by ghrelin. Intracerebroventricular injection of 1 ng/g body wt of gGRL-19 or intraperitoneal injection of 100 ng/g body wt of gGRL-19 increased serum LH levels at 60 min after injection, whereas significant increases in GH levels were found at 15 and 30 min after these treatments. Our results indicate that, in addition to its potent stimulatory actions on GH release, goldfish ghrelin peptides have the novel function of stimulating LH release in goldfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号