首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saccharomyces cerevisiae ribosomal stalk consists of five proteins: P0 protein, with molecular mass of 34 kDa, and four small, 11 kDa, P1A, P1B, P2A and P2B acidic proteins, which form a pentameric complex P0-(P1A-P2B)/(P1B-P2A). This structure binds to a region of 26S rRNA termed GTPase-associated domain and plays a crucial role in protein synthesis. The consecutive steps leading to the formation of the stalk structure have not been fully elucidated and the function of individual P-proteins in the assembling of the stalk and protein synthesis still remains elusive. We applied an integrated approach in order to examine all the P-proteins with respect to stalk assembly. Several in vitro methods were utilized to mimic protein self-organization in the cell. Our efforts resulted in reconstitution of the whole recombinant stalk in solution as well as on the ribosomal particle. On the basis of our analysis, it can be inferred that the P1A-P2B protein complex may be regarded as the key element in stalk formation, having structural and functional importance, whereas P1B-P2A protein complex is implicated in regulation of stalk function. The mechanism of quaternary structure formation could be described as a sequential co-folding/association reaction of an oligomeric system with P0-(P1A-P2B) protein complex as an essential element in the acquisition of a stable quaternary structure of the ribosomal stalk. On the other hand, the P1B-P2A complex is not involved in the cooperative stalk formation and our results indicate an increased rate of protein synthesis due to the latter protein pair.  相似文献   

2.
In all eukaryotic cells, acidic ribosomal P-proteins form a lateral protuberance on the 60S ribosomal subunit-the so-called stalk-structure that plays an important role during protein synthesis. In this work, we report for the first time a full-length cloning of four genes encoding the P-proteins from Candida albicans, their expression in Escherichia coli, purification and characterization of the recombinant proteins. Considerable amino acid sequence similarity was found between the cloned proteins and other known fungal ribosomal P-proteins. On the basis of their phylogenetic relationship and amino acid similarity to their yeast counterparts, the C. albicans P-proteins were named P1A, P1B, P2A and P2B. Using three different approaches, namely: chemical cross-linking method, gel filtration and two-hybrid system, we analyzed mutual interactions among the C. albicans P-proteins. The obtained data showed all the four P-proteins able to form homo-oligomeric complexes. However, the ones found between P1B-P2A and P1A-P2B were dominant forms among the C. albicans P-proteins. Moreover, the strength of interactions between particular proteins was different in these two complexes; the strongest interactions were observed between P1B and P2A proteins, and a significantly weaker one between P1A and P2B proteins.  相似文献   

3.
The surface acidic ribosomal proteins (P-proteins), together with ribosomal core protein P0 form a multimeric lateral protuberance on the 60 S ribosomal subunit. This structure, also called stalk, is important for efficient translational activity of the ribosome. In order to shed more light on the function of these proteins, we are the first to have precisely analyzed mutual interactions among human P-proteins, employing the two hybrid system. The human acidic ribosomal P-proteins, (P1 or P2,) were fused to the GAL4 binding domain (BD) as well as the activation domain (AD), and analyzed in yeast cells. It is concluded that the heterodimeric complex of the P1/P2 proteins is formed preferentially. Formation of homodimers (P1/P1 and P2/P2) can also be observed, though with much less efficiency. Regarding that, we propose to describe the double heterodimeric complex as a protein configuration which forms the 60 S ribosomal stalk: P0-(P1/P2)(2). Additionally, mutual interactions among human and yeast P-proteins were analyzed. Heterodimer formation could be observed between human P2 and yeast P1 proteins.  相似文献   

4.
The ribosome has a morphologically distinct structural feature called the stalk, recognized as a vital element for its function. The ribosomal P proteins constitute the main part of the eukaryotic ribosomal stalk, forming a pentameric structure P0-(P1-P2)(2). The group of P1/P2 proteins in eukaryotes is very diverse, and in spite of functional and structural similarities they do not fully complement one another, probably constituting an adaptive feature of the ribosome from a particular species to diverse environmental conditions. The functional differences among the P1/P2 proteins were analysed in vivo several times; however, a thorough molecular characterization was only done for the yeast P1/P2 proteins. Here, we report a biophysical analysis of the human P1 and P2 proteins, applying mass spectrometry, CD and fluorescence spectroscopy, cross-linking and size exclusion chromatography. The human P1/P2 proteins form stable heterodimer, as it is the case for P1/P2 from yeast. However, unlike the yeast complex P1A-P2B, the human P1-P2 dimer showed a three-state transition mechanism, suggesting that an intermediate species may exist in solution.  相似文献   

5.

Background

The ribosomal stalk composed of P-proteins constitutes a structure on the large ribosomal particle responsible for recruitment of translation factors and stimulation of factor-dependent GTP hydrolysis during translation. The main components of the stalk are P-proteins, which form a pentamer. Despite the conserved basic function of the stalk, the P-proteins do not form a uniform entity, displaying heterogeneity in the primary structure across the eukaryotic lineage. The P-proteins from protozoan parasites are among the most evolutionarily divergent stalk proteins.

Methods

We have assembled P-stalk complex of Plasmodium falciparum in vivo in bacterial system using tricistronic expression cassette and provided its characteristics by biochemical and biophysical methods.

Results

All three individual P-proteins, namely uL10/P0, P1 and P2, are indispensable for acquisition of a stable structure of the P stalk complex and the pentameric uL10/P0-(P1-P2)2 form represents the most favorable architecture for parasite P-proteins.

Conclusion

The formation of P. falciparum P-stalk is driven by trilateral interaction between individual elements which represents unique mode of assembling, without stable P1–P2 heterodimeric intermediate.

General significance

On the basis of our mass-spectrometry analysis supported by the bacterial two-hybrid assay and biophysical analyses, a unique pathway of the parasite stalk assembling has been proposed. We suggest that the absence of P1/P2 heterodimer, and the formation of a stable pentamer in the presence of all three proteins, indicate a one-step formation to be the main pathway for the vital ribosomal stalk assembly, whereas the P2 homo-oligomer may represent an off-pathway product with physiologically important nonribosomal role.  相似文献   

6.
The eukaryotic ribosomal stalk, composed of the P-proteins, is a part of the GTPase-associated-center which is directly responsible for stimulation of translation-factor-dependent GTP hydrolysis. Here we report that yeast mutant strains lacking P1/P2-proteins show high propagation of the yeast L-A virus. Affinity-capture-MS analysis of a protein complex isolated from a yeast mutant strain lacking the P1A/P2B proteins using anti-P0 antibodies showed that the Gag protein, the major coat protein of the L-A capsid, is associated with the ribosomal stalk. Proteomic analysis revealed that the elongation factor eEF1A was also present in the isolated complex. Additionally, yeast strains lacking the P1/P2-proteins are hypersensitive to paromomycin and hygromycin B, underscoring the fact that structural perturbations in the stalk strongly influence the ribosome function, especially at the level of elongation.  相似文献   

7.
The ribosome has a distinct lateral protuberance called the stalk; in eukaryotes it is formed by the acidic ribosomal P-proteins which are organized as a pentameric entity described as P0-(P1-P2)(2). Bilateral interactions between P0 and P1/P2 proteins have been studied extensively, however, the region on P0 responsible for the binding of P1/P2 proteins has not been precisely defined. Here we report a study which takes the current knowledge of the P0 - P1/P2 protein interaction beyond the recently published information. Using truncated forms of P0 protein and several in vitro and in vivo approaches, we have defined the region between positions 199 and 258 as the P0 protein fragment responsible for the binding of P1/P2 proteins in the yeast Saccharomyces cerevisiae. We show two short amino acid regions of P0 protein located at positions 199-230 and 231-258, to be responsible for independent binding of two dimers, P1A-P2B and P1B-P2A respectively. In addition, two elements, the sequence spanning amino acids 199-230 and the P1A-P2B dimer were found to be essential for stalk formation, indicating that this process is dependent on a balance between the P1A-P2B dimer and the P0 protein.  相似文献   

8.
Acidic ribosomal P proteins form a distinct lateral protuberance on the 60S ribosomal subunit. In yeast, this structure is composed of two heterocomplexes (P1A-P2B and P1B-P2A) attached to the ribosome with the aid of the P0 protein. In solution, the isolated P proteins P1A and P2B have a flexible structure with some characteristics of a molten globule [Zurdo, J., et al. (2000) Biochemistry 39, 8935-8943]. In this report, the structure of P1A-P2B heterocomplex from Saccharomyces cerevisiae is investigated by means of size-exclusion chromatography, chemical cross-linking, circular dichroism, light scattering, and fluorescence spectroscopy. The circular dichroism experiment shows that the complex could be ranked in the tertiary class of all-alpha proteins, with an average alpha-helical content of approximately 65%. Heat and urea denaturation experiments reveal that the P1A-P2B complex, unlike the isolated proteins, has a full cooperative transition which can be fitted into a two-state folding-unfolding model. The behavior of the complex in the presence of 2,2,2-trifluoroethanol also resembles a two-state folding-unfolding transition, further supporting the idea that the heterocomplex contains well-packed side chains. In conclusion, the P1A-P2B heterocomplex, unlike the isolated proteins, has a well-defined hydrophobic core. Consequently, the complex can put up its structure without additional ribosomal components, so the heterodimeric complex reflects the intrinsic properties of the two analyzed proteins, indicating thus that this is the only possible configuration of the P1A and P2B proteins on the ribosomal stalk structure.  相似文献   

9.
J Bailey-Serres  S Vangala  K Szick    C H Lee 《Plant physiology》1997,114(4):1293-1305
We determined that ribosomes of seedling roots of maize (Zea mays L.) contain the acidic phosphoproteins (P-proteins) known to form a flexible lateral stalk structure of the 60S subunit of eukaryotic ribosomes. The P-protein stalk, composed of P0, P1, and P2, interacts with elongation factors, mRNA, and tRNA during translation. Acidic proteins of 13 to 15.5 kD were released as a complex from ribosomes with 0.4 M NH4Cl/50% ethanol. Protein and cDNA sequence analysis confirmed that maize ribosomes contain one type of P1, two types of P2, and a fourth and novel P1/P2-type protein. This novel P-protein, designated P3, has the conserved C terminus of P1 and P2. P1, P2, and P3 are similar in deduced mass (11.4-12.2 kD) and isoelectric point (4.1-4.3). A 35.5- to 36-kD acidic protein was released at low levels from ribosomes with 1.0 M NH4Cl/50% ethanol and identified as P0. Labeling of roots with [32P]inorganic phosphate confirmed the in vivo phosphorylation of the P-proteins. Flooding caused dynamic changes in the P-protein complex, which affected the potential of ribosome-associated kinases and casein kinase II to phosphorylate the P-proteins. We discuss possible alterations of the ribosomal P-protein complex and consider that these changes may be involved in the selective translation of mRNA in flooded roots.  相似文献   

10.
The yeast ribosomal "stalk"--a lateral protuberance on the 60S subunit--consists of four acidic P-proteins, P1A, P1B, P2A and P2B, which play an important role during protein synthesis. Contrary to most ribosomal proteins, which are rapidly degraded in the cytoplasm, P-proteins are found as a cytoplasmic pool and are exchanged with the ribosome-bound proteins during translation. As yet, subcellular trafficking of P-proteins has not been extensively investigated. Therefore, we have characterized--using immunological approaches--the cellular distribution of P-proteins in several environmental conditions, characteristic of yeast cells, such as growth phases, and heat-, osmotic-, and oxygen-stress. Using the western blotting approach, we have shown P-proteins to be present in constant amounts on the ribosomes, despite their exchangeability with the cytoplasmic pool, and regardless of environmental conditions. On the other hand, P-protein level in the cytoplasm decreased sharply throughout the consecutive growth phases, but was not affected by several stress conditions. Applying the electron microscopic technique and immunogold labeling, we have found that P-proteins are located in two cell compartments. The first one is the cytoplasm and the second one--an unexpected place--the cell wall, where P-proteins are fully phosphorylated. Moreover, the existence of P-proteins on the cellular wall is not affected by various environmental conditions.  相似文献   

11.
Trichosanthin (TCS) is a type I ribosome-inactivating protein that inactivates ribosome by enzymatically depurinating the A4324 at the α-sarcin/ricin loop of 28S rRNA. We have shown in this and previous studies that TCS interacts with human acidic ribosomal proteins P0, P1 and P2, which constitute the lateral stalk of eukaryotic ribosome. Deletion mutagenesis showed that TCS interacts with the C-terminal tail of P2, the sequences of which are conserved in P0, P1 and P2. The P2-binding site on TCS was mapped to the C-terminal domain by chemical shift perturbation experiments. Scanning charge-to-alanine mutagenesis has shown that K173, R174 and K177 in the C-terminal domain of TCS are involved in interacting with the P2, presumably through forming charge–charge interactions to the conserved DDD motif at the C-terminal tail of P2. A triple-alanine variant K173A/R174A/K177A of TCS, which fails to bind P2 and ribosomal stalk in vitro, was found to be 18-fold less active in inhibiting translation in rabbit reticulocyte lysate, suggesting that interaction with P-proteins is required for full activity of TCS. In an analogy to the role of stalk proteins in binding elongation factors, we propose that interaction with acidic ribosomal stalk proteins help TCS to locate its RNA substrate.  相似文献   

12.
In the 60 S ribosomal subunit, the lateral stalk made of the P-proteins plays a major role in translation. It contains P0, an insoluble protein anchoring P1 and P2 to the ribosome. Here, rat recombinant P0 was overproduced in inclusion bodies and solubilized in complex with the other P-proteins. This method of solubilization appeared suitable to show protein complexes and revealed that P1, but not P2, interacted with P0. Furthermore, the use of truncated mutants of P1 and P2 indicated that residues 1-63 in P1 connected P0 to residues 1-65 in P2. Additional experiments resulted in the conclusion that P1 and P2 bound one another, either connected with P0 or free, as found in the cytoplasm. Accordingly, a model of association for the P-proteins in the stalk is proposed. Recombinant P0 in complex with phosphorylated P2 and either P1 or its (1-63) domain efficiently restored the proteosynthetic activity of 60 S subunits deprived of native P-proteins. Therefore, refolded P0 was functional and residues 1-63 only in P1 were essential. Furthermore, our results emphasize that the refolding principle used here is worth considering for solubilizing other insoluble proteins.  相似文献   

13.
The lateral ribosomal stalk is responsible for the kingdom-specific binding of translation factors and activation of GTP hydrolysis during protein synthesis. The eukaryotic stalk is composed of three acidic ribosomal proteins P0, P1 and P2. P0 binds two copies of P1/P2 hetero-dimers to form a pentameric P-complex. The structure of the eukaryotic stalk is currently not known. To provide a better understanding on the structural organization of eukaryotic stalk, we have determined the solution structure of the N-terminal dimerization domain (NTD) of P1/P2 hetero-dimer. Helix-1, -2 and -4 from each of the NTD-P1 and NTD-P2 form the dimeric interface that buries 2200 A(2) of solvent accessible surface area. In contrast to the symmetric P2 homo-dimer, P1/P2 hetero-dimer is asymmetric. Three conserved hydrophobic residues on the surface of NTD-P1 are replaced by charged residues in NTD-P2. Moreover, NTD-P1 has an extra turn in helix-1, which forms extensive intermolecular interactions with helix-1 and -4 of NTD-P2. Truncation of this extra turn of P1 abolished the formation of P1/P2 hetero-dimer. Systematic truncation studies suggest that P0 contains two spine-helices that each binds one copy of P1/P2 hetero-dimer. Modeling studies suggest that a large hydrophobic cavity, which can accommodate the loop between the spine-helices of P0, can be found on NTD-P1 but not on NTD-P2 when the helix-4 adopts an 'open' conformation. Based on the asymmetric properties of NTD-P1/NTD-P2, a structural model of the eukaryotic P-complex with P2/P1:P1/P2 topology is proposed.  相似文献   

14.
The lateral flexible stalk of the large ribosomal subunit is made of several interacting proteins anchored to a conserved region of the 28S (26S) rRNA termed the GTPase-associated domain or thiostrepton loop. This structure is demonstrated to adopt puzzling changes of conformation following the different steps of the elongation cycle. Some of these proteins termed the P-proteins in eukaryotes and L10 and L7/L12 in bacteria, present little structural similarities between Eubacteria on one side and Archae and Eukaryotes on the other side. However, up to now, these proteins seem to present a similar macromolecular organisation and they have been involved in the same functions. Convincing evidence attests that these proteins participate in elongation factor binding to the ribosome, and it has been suggested that these proteins might be evolved in a GTP hydrolysis activating protein activity. Involvement of these proteins in the translational mechanism is discussed. Moreover, in eukaryotes, small P-proteins are also found as isolated proteins in a cytoplasmic pool that exchanges with the ribosome-associated P-proteins. Moreover, a part of the ribosomal proteins is phosphorylated (hence their P-protein names). The biological signification of these particularities is discussed.  相似文献   

15.
The eukaryotic acidic P1 and P2 proteins modulate the activity of the ribosomal stalk but playing distinct roles. The aim of this work was to analyze the structural features that are behind their different function. A structural characterization of Saccharomyces cerevisaie P1 alpha and P2 beta proteins was performed by circular dichroism, nuclear magnetic resonance, fluorescence spectroscopy, thermal denaturation, and protease sensitivity. The results confirm the low structure present in both proteins but reveal clear differences between them. P1 alpha shows a virtually unordered secondary structure with a residual helical content that disappears below 30 degrees C and a clear tendency to acquire secondary structure at low pH and in the presence of trifluoroethanol. In agreement with this higher disorder P1 alpha has a fully solvent-accessible tryptophan residue and, in contrast to P2 beta, is highly sensitive to protease degradation. An interaction between both proteins was observed, which induces an increase in the global secondary structure content of both proteins. Moreover, mixing of both proteins causes a shift of the P1 alpha tryptophan 40 signal, pointing to an involvement of this region in the interaction. This evidence directly proves an interaction between P1 alpha and P2 beta before ribosome binding and suggests a functional complementation between them. On a whole, the results provide structural support for the different functional roles played by the proteins of the two groups showing, at the same time, that relatively small structural differences between the two stalk acidic protein types can result in significant functional changes.  相似文献   

16.
The ribosomal stalk of the 60S subunit has been shown to play a crucial role in all steps of protein synthesis, but its structure and exact molecular function remain an unanswered question. In the present study, we show the low-resolution models of the solution structure of the yeast ribosomal stalk, composed of five proteins, P0-(P1-P2)(2). The model of the pentameric stalk complex determined by small-angle X-ray scattering reveals an elongated shape with a maximum length of 13 nm. The model displays three distinct lobes, which may correspond to the individual P1-P2 heterodimers anchored to the C-terminal domain of the P0 protein.  相似文献   

17.
Maize (Zea mays L.) possesses four distinct approximately 12-kDa P-proteins (P1, P2a, P2b, P3) that form the tip of a lateral stalk on the 60 S ribosomal subunit. RNA blot analyses suggested that the expression of these proteins was developmentally regulated. Western blot analysis of ribosomal proteins isolated from various organs, kernel tissues during seed development, and root tips deprived of oxygen (anoxia) revealed significant heterogeneity in the levels of these proteins. P1 and P3 were detected in ribosomes of all samples at similar levels relative to ribosomal protein S6, whereas P2a and P2b levels showed considerable developmental regulation. Both forms of P2 were present in ribosomes of some organs, whereas only one form was detected in other organs. Considerable tissue-specific variation was observed in levels of monomeric and multimeric forms of P2a. P2b was not detected in root tips, accumulated late in seed embryo and endosperm development, and was detected in soluble ribosomes but not in membrane-associated ribosomes that copurified with zein protein bodies of the kernel endosperm. The phosphorylation of the 12-kDa P-proteins was also developmentally and environmentally regulated. The potential role of P2 heterogeneity in P-protein composition in the regulation of translation is discussed.  相似文献   

18.
I G Wool  Y L Chan  A Glück  K Suzuki 《Biochimie》1991,73(7-8):861-870
The covalent structures of rat ribosomal proteins P0, P1, and P2 were deduced from the sequences of nucleotides in recombinant cDNAs. P0 contains 316 amino acids and has a molecular weight of 34,178; P1 has 114 residues and a molecular weight of 11,490: and P2 has 115 amino acids and a molecular weight of 11,684. The rat P-proteins have a near identical (16 of 17 residues) sequence of amino acids at their carboxyl termini and are related to analogous proteins in other eukaryotic species. A proposal is made for a uniform nomenclature for rat and yeast ribosomal proteins.  相似文献   

19.
The ribosomal "stalk" structure is a distinct lateral protuberance located on the large ribosomal subunit in prokaryotic, as well as in eukaryotic cells. In eukaryotes, this ribosomal structure is composed of the acidic ribosomal P proteins, forming two hetero-dimers (P1/P2) attached to the ribosome through the P0 protein. The "stalk" is essential for the ribosome activity, taking part in the interaction with elongation factors.In this report, we have shown that the subcellular distribution of the human P proteins does not fall into standard behavior of regular ribosomal proteins. We have used two approaches to assess the distribution of the P proteins, in vivo experiments with GFP fusion proteins and in vitro one with anti-P protein antibodies. In contrast to standard r-proteins, the P1 and P2 proteins are not actively transported into the nucleus compartment, remaining predominantly in the cytoplasm (the perinuclear compartment). The P0 protein was found in the cytoplasm, as well as in the nucleus; however, the nucleoli were excluded. This protein was scattered around the nuclei, and the distribution might reflect association with the so-called nuclear bodies. This is the first example of r-proteins that are not actively transported into the nucleus; moreover, this might imply that the "stalk" constituents are assembled onto the ribosomal particle at the very last step of ribosomal maturation, which takes part in the cell cytoplasm.  相似文献   

20.
The genes encoding the ribosomal P-proteins CcP0, CcP1 and CcP2 of Ceratitis capitata were expressed in the conditional P0-null strains W303dGP0 and D67dGP0 of Saccharomyces cerevisiae, the ribosomes of which contain either standard amounts or are totally deprived of the P1/P2 proteins, respectively. The presence of the CcP0 protein restored cell viability but reduced the growth rate. In the W303CcP0 strain, all four acidic yeast proteins were found on the ribosomes, but in notably less quantity, while a preferable binding of the YP1α/YP2β pair was established. In the absence of the endogenous P1/P2 proteins in the D67CcP0 strain, the complementation capacity of the CcP0 protein was considerably reduced. The simultaneous expression of the three medfly genes resulted in alterations of the stalk composition: both the CcP1 and CcP2 proteins were found on the particles substituting the YP1α and YP2α proteins, respectively, but their presence did not alter the growth rate, except in the case of the YP1α/β defective strain, where a helping effect on the binding of the YP2α and YP2β proteins on the ribosomes was confirmed. Therefore, the medfly ribosomal P-proteins complement the yeast P-protein deficient strains forming an heterogeneous ribosomal stalk, which, however, is not functionally equivalent to the endogenous one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号