共查询到20条相似文献,搜索用时 0 毫秒
1.
Paul R. Schimmel 《Molecular and cellular biochemistry》1979,25(1):3-14
Summary Aminoacyl tRNA synthetases discriminate between tRNA species by a highly specific mechanism. Physical and chemical studies indicate that the synthetases bind along and around the inside of the three-dimensional L-shaped tRNA structure. Studies of mutant tRNAs that affect synthetase interaction tend to confirm this conclusion. However, in contrast to proteins that recognize a specific block of contiguous nucleotide units (e.g., repressors, restriction enzymes, etc.), synthetases appear to interact with spatially disperse elements of the structure. Available evidence suggests that tRNA binding clefts on various synthetases may be roughly similar, with specificity being achieved by the choice of amino acid residues in a few critical positions in the tRNA binding clefts. With this idea in mind, it should be possible to introduce amino acid substitutions into the binding clefts and thereby change tRNA recognition specificity. This has been attempted (by genetic manipulations) and a mutant alanine tRNA synthetase with altered tRNA recognition has been isolated. This enzyme can attach alanine to isoleucine specific tRNA. When presented with valine specific tRNA, a tRNA similar in some structural features to the isoleucine specific tRNA, or with the structurally quite different tyrosine specific tRNA, no significant aminoacylation occurs. Thus, a precise specificity alteration can occur through mutation; this result supports the idea of similarities in synthetase binding clefts, with specificity being achieved by the positioning of amino acids at critical positions in these clefts. Finally, further data have been obtained on the issue of possible transient covalent bond formation between synthetases and tRNAs, as a critical part of the interaction.Abbreviations tRNAx
a tRNA specific for the amino acid
- x
where x is given the standard 3 letter abbreviation 相似文献
2.
3.
4.
5.
Evidence for interaction of an aminoacyl transfer RNA synthetase with a region important for the identity of its cognate transfer RNA 总被引:7,自引:0,他引:7
Recent experiments showed that a single base pair (G3:U70) in the amino acid acceptor helix is a major determinant for the identity of Escherichia coli alanine transfer RNA. Experiments reported here show that bound alanine tRNA synthetase protects (from ribonuclease attack) seven consecutive phosphodiester linkages on the 3'-side of the acceptor-T psi C helix (phosphates 65-71) and a few additional sites that are in scattered locations. There is no evidence for interaction of the enzyme with the anticodon, a sequence which can be varied without effect on recognition by alanine tRNA synthetase. 相似文献
6.
7.
8.
9.
10.
11.
Influence of enol ether amino acids, inhibitors of ethylene biosynthesis, on aminoacyl transfer RNA synthetases and protein synthesis
下载免费PDF全文

The analogs of rhizobitoxine, aminoethoxyvinylglycine (AVG) (l-2-amino-4-2'-aminoethoxy-trans-3 butenoic acid) and methoxyvinylglycine (MVG) (l-2-amino-4-methoxy-trans-3-butenoic acid), that are potent inhibitors of ethylene biosynthesis at 0.1 millimolar also inhibited protein synthesis and charging of tRNA especially at 1 millimolar and higher concentrations. The saturated analog of MVG inhibited ethylene synthesis while the saturated analog of AVG did not. Both saturated AVG and MVG inhibit methionyl- and leucyl-amino acyl-tRNA synthetase. Because of the inhibition of amino acid metabolism in plant tissues by these rhizobitoxine analogs caution is advised in interpreting the results obtained with concentrations of compounds above 0.1 millimolar. 相似文献
12.
13.
14.
Lysine insertion during coded protein synthesis requires lysyl-tRNA(Lys), which is synthesized by lysyl-tRNA synthetase (LysRS). Two unrelated forms of LysRS are known: LysRS2, which is found in eukaryotes, most bacteria, and a few archaea, and LysRS1, which is found in most archaea and a few bacteria. To compare amino acid recognition between the two forms of LysRS, the effects of l-lysine analogues on aminoacylation were investigated. Both enzymes showed stereospecificity toward the l-enantiomer of lysine and discriminated against noncognate amino acids with different R-groups (arginine, ornithine). Lysine analogues containing substitutions at other positions were generally most effective as inhibitors of LysRS2. For example, the K(i) values for aminoacylation of S-(2-aminoethyl)-l-cysteine and l-lysinamide were over 180-fold lower with LysRS2 than with LysRS1. Of the other analogues tested, only gamma-aminobutyric acid showed a significantly higher K(i) for LysRS2 than LysRS1. These data indicate that the lysine-binding site is more open in LysRS2 than in LysRS1, in agreement with previous structural studies. The physiological significance of divergent amino acid recognition was reflected by the in vivo resistance to growth inhibition imparted by LysRS1 against S-(2-aminoethyl)-l-cysteine and LysRS2 against gamma-aminobutyric acid. These differences in resistance to naturally occurring noncognate amino acids suggest the distribution of LysRS1 and LysRS2 contributes to quality control during protein synthesis. In addition, the specific inhibition of LysRS1 indicates it is a potential drug target. 相似文献
15.
16.
17.
18.
19.
20.
Wayne C. Hawkes David E. Lyons Al L. Tappel 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1982,699(3):183-191
The aminoacylation of rat liver tRNA with selenocysteine was studied in tissue slices and in a cell-free system with [75Se]selenocysteine and [75Se]selenite as substrates. [75Se]Selenocysteyl tRNA was isolated via phenol extraction, 1 M NaCl extraction and chromatography on DEAE-cellulose. [75Se]Selenocysteyl tRNA was purified on columns of DEAE-Sephacel, benzoylated DEAE-cellulose and Sepharose 4B. In a dual-label aminoacylation with [35S]cysteme, the most highly purified 75Se-fractions were > 100-fold purified relative to 35S. These fractions contained < 0.7% of the [35S]cysteine originally present in the total tRNA. When [35Se]selenocysteyl tRNA was purified from a mixture of 14C-labeled amino acids, over 97% of the [14C]aminoacyl tRNA was removed. The [75Se]selenocysteine was associated with the tRNA via an aminoacyl linkage. Criteria used for identification included alkaline hydrolysis and recovery of [75Se]selenocysteine, reaction with hydroxylamine and recovery of [75Se]selenocysteyl hydroxamic acid and release of 75Se by ribonuclease. The specificity of [75Se]selenocysteine aminoacylation was demonstrated by resistance to competition by a 125-fold molar excess of either unlabeled cysteine or a mixture of the other 19 amino acids in the cell-free selenocysteine aminoacylation system. 相似文献