共查询到20条相似文献,搜索用时 0 毫秒
1.
Two linked hairy/Enhancer of split-related zebrafish genes,her1 and her7, function together to refine alternating somite boundaries 总被引:6,自引:0,他引:6
Henry CA Urban MK Dill KK Merlie JP Page MF Kimmel CB Amacher SL 《Development (Cambridge, England)》2002,129(15):3693-3704
The formation of somites, reiterated structures that will give rise to vertebrae and muscles, is thought to be dependent upon a molecular oscillator that may involve the Notch pathway. hairy/Enhancer of split related [E(spl)]-related (her or hes) genes, potential targets of Notch signaling, have been implicated as an output of the molecular oscillator. We have isolated a zebrafish deficiency, b567, that deletes two linked her genes, her1 and her7. Homozygous b567 mutants have defective somites along the entire embryonic axis. Injection of a combination of her1 and her7 (her1+7) morpholino modified antisense oligonucleotides (MOs) phenocopies the b567 mutant somitic phenotype, indicating that her1 and her7 are necessary for normal somite formation and that defective somitogenesis in b567 mutant embryos is due to deletion of her1 and her7. Analysis at the cellular level indicates that somites in her1+7-deficient embryos are enlarged in the anterior-posterior dimension. Weak somite boundaries are often found within these enlarged somites which are delineated by stronger, but imperfect, boundaries. In addition, the anterior-posterior polarity of these enlarged somites is disorganized. Analysis of her1 MO-injected embryos and her7 MO-injected embryos indicates that although these genes have partially redundant functions in most of the trunk region, her1 is necessary for proper formation of the anteriormost somites and her7 is necessary for proper formation of somites posterior to somite 11. By following somite development over time, we demonstrate that her genes are necessary for the formation of alternating strong somite boundaries. Thus, even though two potential downstream components of Notch signaling are lacking in her1+7-deficient embryos, somite boundaries form, but do so with a one and a half to two segment periodicity. 相似文献
2.
Pichon B Taelman V Kricha S Christophe D Bellefroid EJ 《Development genes and evolution》2002,212(10):491-495
We have isolated a Xenopus homologue of the mammalian hairy and Enhancer of split related gene HRT1. XHRT1 expression in late gastrula and early neurula embryos is restricted to two stripes of cells in the medial neural plate and in dorsal endodermal cells. At later stages, XHRT1 is expressed in the floor plate, in hypochord cells and in the somitogenic and anterior presomitic mesoderm. By tailbud stage, XHRT1 is also highly expressed in the dorsal hindbrain, telencephalon and eye vesicles, olfactory placodes, pronephros, branchial arches and tail fin. We also show that XHRT1 expression in medial neural cells is induced by Notch signaling and that there are differences in the way XHRT1 and other H/E(spl) genes are regulated. 相似文献
3.
Kyria Tietze Herbert Schrons José A. Campos-Ortega Elisabeth Knust 《Development genes and evolution》1993,203(1-2):10-17
To assess the functional domains of the proteins encoded by E(spl) and HLH-m5, two genes of the Enhancer of split complex [E(SPL)-C] of Drosophila melanogaster, a number of variants have been made by in vitro mutagenesis, transformed into the germ line of the wild-type, and genetically combined with a chromosomal deletion lacking four of the genes of the E(SPL)-C. All constructs used attenuated the neurogenic phenotype associated with this deletion. However, constructs encoding proteins with truncated carboxy-termini exibited in all cases a higher activity than constructs encoding the full length version of the protein. Neutralization of the basic domain severely reduced, but did not completely abolish the rescuing activity of E(spl), while proteins in which a proline residue within the basic domain had been changed to either threonine or asparagine were slightly less efficient in their rescuing activity than the corresponding wild-type versions. We discuss the possible significance of these results for the function of the protein domains. 相似文献
4.
5.
6.
Gajewski M Elmasri H Girschick M Sieger D Winkler C 《Development genes and evolution》2006,216(6):315-332
Somitogenesis is the key developmental step, which divides the vertebrate body axis into segmentally repeated structures. It requires an intricate process of pre-patterning, which is driven by an oscillator mechanism consisting of the Delta–Notch pathway and various hairy- and Enhancer of split-related (her) genes. The subset of her genes, which are necessary to set up the segmentation clock, reveal a complex scenario of interactions. To understand which her genes are essential core players in this process, we compared the expression patterns of somitogenesis-relevant her genes in zebrafish and medaka (Oryzias latipes). Most of the respective medaka genes (Ol-her) are duplicated like what has been shown for zebrafish (Dr-her) and pufferfish genes (Fr-her). However, zebrafish genes show some additional copies and significant differences in expression patterns. For the paralogues Dr-her1 and Dr-her11, only one copy exists in the medaka (Ol-her1/11), which combines the expression patterns found for both zebrafish genes. In contrast to Dr-her5, the medaka orthologue appears to play a role in somitogenesis because it is expressed in the presomitic mesoderm (PSM). PSM expression also suggests a role for both Ol-her13 genes, homologues of mouse Hes6 (mHes6), in this process, which would be consistent with a conserved mHes6 homologue gear in the segmentation clock exclusively in lower vertebrates. Members of the mHes5 homologue group seem to be involved in somite formation in all vertebrates (e.g. Dr- and Ol-her12), although different paralogues are additionally recruited in zebrafish (e.g. Dr-her15) and medaka (e.g. Ol-her4). We found that the linkage between duplicates is strongly conserved between pufferfish and medaka and less well conserved in zebrafish. Nevertheless, linkage and orientation of several her duplicates are identical in all three species. Therefore, small-scale duplications must have happened before whole genome duplication occurred in a fish ancestor. Expression of multiple stripes in the intermediate PSM, characteristic for the zebrafish orthologues, is absent in all somitogenesis-related her genes of the medaka. In fact, the expression mode of Ol-her1/11 and Ol-her5 indicates dynamism similar to the hairy clock genes in chicken and mouse. This suggests that Danio rerio shows a rather derived clock mode when compared to other fish species and amniotes or that, alternatively, the clock mode evolved independently in zebrafish, medaka and mouse or chicken.An erratum to this article can be found at 相似文献
7.
8.
9.
10.
Genetic networks that include positive and negative feedback can exhibit oscillations. These oscillations are a form of emergence, which is when novel patterns or properties arise during self organization of complex systems. Within the extending trunk and tail of the developing vertebrate embryo, the somitogenesis oscillator governs the periodic formation of segments that ultimately become the vertebral column and musculature. These oscillations occur within the context of noise created by cell movement, mitosis, and stochastic gene expression. Here, we review recent progress in our understanding of the role of the Notch signaling pathway in the zebrafish segmentation oscillator and our appreciation of how the oscillator interfaces with different sources of noise. 相似文献
11.
12.
13.
Ivone Un San Leong Andrew N. Shelling 《Biochemical and biophysical research communications》2010,396(4):817-824
Long QT syndrome is a disorder that is characterised by a prolonged QT-interval and can lead to fatal cardiac arrhythmias. Many animal models have been created to study congenital long QT syndrome. Of these, zebrafish models have involved targeting two different KCNH2 gene (long QT syndrome 2) orthologues, termed zerg-2 and zerg-3, with differing cardiac phenotypes. In order to clarify this situation, this study uses a bioinformatic approach to search the current zebrafish genome sequence (Zv7 and Zv8 builds) to investigate and locate all likely zebrafish orthologues of the human KCNH2 gene. Quantitative real-time RT-PCR was also used to determine the temporal and spatial gene expression profile of the zebrafish orthologues. The data support the conclusion that zerg-2 and zerg-3 are apparent orthologues of different human genes encoding potassium ion channels, but that their functions have switched compared to the respective human proteins. 相似文献
14.
Vascular endothelial growth factor (VEGF-A) is a key angiogenic growth factor which regulates vertebrate embryonic vascularization, adult physiology such as wound healing and reproduction as well as many human diseases. To understand the evolution and regulation of this gene in vertebrates, we have isolated and characterized the zebrafish vegf-A gene and compared it with VEGF-A genes of human, mouse as well as an in silico isolated VEGF-A homologue from pufferfish. Our results indicate that the zebrafish vegf-A gene is organized similarly to mammalian and Fugu VEGF-A genes, with eight exons interrupted by seven introns. However, zebrafish vegf-A introns are generally larger than mammalian introns while Fugu VEGF-A introns are much smaller. Furthermore, zebrafish exon 6 (z6) has a unique sequence while Fugu's exon 6 is highly homologous to the mammalian counterparts. Alternative splicing generates multiple vegf-A mRNA isoforms in zebrafish with Vegf(121) as the dominant isoform in adult and Vegf(165) as the dominant isoform in early embryos. The exon z6 containing isoform Vegf(12345z678) is only detected in heart, muscle, and early embryos while another isoform Vegf-A(1234577)(a)(8) is only detected in heart. Furthermore, no conserved 5' flanking sequences between zebrafish and Fugu were observed while numerous conserved regions exist between human and mouse in this area. These results suggest both conserved and diverged functions of VEGF-A from fish to mammals since the separation of these two groups from their common ancestor about 450 million years ago and a diverged regulation of this gene since the separation of zebrafish from Fugu. These data will be valuable for future studies of VEGF-A gene regulation and function in different vertebrates. 相似文献
15.
16.
17.
Somitogenesis is the process by which the segmented precursors of the skeletal muscle and vertebral column are generated during vertebrate embryogenesis. While somitogenesis appears to be a serially homologous, reiterative process, we find that there are differences between the genetic control of early/anterior and late/posterior somitogenesis. We demonstrate that point mutations can cause segmentation defects in either the anterior, middle, or posterior somites in the zebrafish. We find that mutations in zebrafish integrinalpha5 disrupt anterior somite formation, giving a phenotype complementary to the posterior defects seen in the notch pathway mutants after eight/deltaD and deadly seven/notch1a. Double mutants between the notch pathway and integrinalpha5 display somite defects along the entire body axis, with a complete loss of the mesenchymal-to-epithelial transition and Fibronectin matrix assembly in the posterior. Our data suggest that notch- and integrinalpha5-dependent cell polarization and Fibronectin matrix assembly occur concomitantly and interdependently during border morphogenesis. 相似文献
18.
19.
Vectors based on murine retroviruses are among the most efficient means to insert reporter constructs into the context of a vertebrate chromosome with the aim to visualize cis-regulatory information available to a basal promoter at the site of insertion. In combination with using the zebrafish embryo as a readout for the activity of regulatory elements, enhancer detection becomes a powerful technique for gene discovery and for the mapping of the extent of regulatory domains in a vertebrate genome. Our laboratory has performed the only large-scale enhancer detection screen to date in any vertebrate and we describe in this paper the methods we developed to generate viral particles, to insert reporter constructs into the zebrafish germ line, the screening of detection events in heterozygous F1 embryos, and the isolation of genomic sequence flanking the inserted vector for the purpose of genomic mapping. Given sufficient scale, the technology described here can be used to obtain cis-regulatory information across the entire zebrafish genome for any given basal promoter. 相似文献