首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure is described for the quantitative conversion of saturated long-chain cyclic acetals of diols to the corresponding O-acyl diols. Acetal ozonolysis proceeds in ethyl acetate-methylene chloride solution at -16 to -18 degrees C without overoxidation.  相似文献   

2.
Hydroxy long-chain fatty acids occur widely in animals and plants and have important physiological activities in these eukaryotes. There are indications that these compounds are also common and important in fungi. The occurrence of hydroxy-polyunsaturated fatty acids (hydroxy-PUFAs) is of biotechnological importance, because these compounds are potentially high-value lipid products with medical applications. This review pays particular attention to the production of hydroxy-PUFAs by yeasts and other fungi. Hydroxy-PUFAs derived from lipoxygenase activity appear to be present in most fungi, while hydroxy-PUFAs from cyclooxygenase activity (i.e. prostaglandins) have mainly been implicated in the Oomycota and in yeasts from the genus Dipodascopsis. The occurrence of other hydroxy long-chain fatty acids in fungi is also discussed briefly; these include hydroxy fatty acids that are generally associated with cytochrome P-450 monooxygenase activity (i.e. terminal and sub-terminal hydroxy acids and diols derived from the corresponding epoxides) as well as 2-hydroxy-fatty acids and 3-hydroxy-fatty acids.The authors are with the Department of Microbiology and Biochemistry, University of the Orange Free State, P.O. Box 339, Bloemfontein, 9300, South Africa  相似文献   

3.
A concise synthesis of long-chain poly(ethylene glycol) (PEG) of defined molecular weight up to 29 ethyleneoxy units is described. These PEG diols were converted in a two-step synthesis into Fmoc-protected PEG amino acids, suitable as long linkers and compatible with solid-phase peptide synthesis. Long PEG chains (MW > 1000) can be readily synthesized with this method, which has the advantage of defined single molecular weight products over the comparable commercial polymers. The application of these PEG linkers to the synthesis of peptide-PEG-folate conjugates on a solid support was investigated. A method for the solid support synthesis of the targeting component of the conjugate, folic acid-cysteine, was developed, resulting in improved yields with respect to literature methods. The assembly of the peptide, PEG linker, and targeting group on solid support resulted in the synthesis of a conjugate of defined molecular weight and structure.  相似文献   

4.
5.
Styrene and 1,3-butadiene are important intermediates used extensively in the plastics industry. They are metabolized mainly through cytochrome P450-mediated oxidation to the corresponding epoxides, which are subsequently converted to diols by epoxide hydrolase or through spontaneous hydration. The resulting styrene glycol and 3-butene-1,2-diol have been suggested as biomarkers of exposure to styrene and 1,3-butadiene, respectively. Unfortunately, poor ionization of the diols within electrospray mass spectrometers becomes an obstacle to the detection of the two diols by liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS). We developed an LC/ESI-MS approach to analyze styrene glycol and 3-butene-1,2-diol by means of derivatization with 2-bromopyridine-5-boronic acid (BPBA), which not only dramatically increases the sensitivity of diol detection but also facilitates the identification of the diols. The analytical approach developed was simple, quick, and convincing without the need for complicated chemical derivatization. To evaluate the feasibility of BPBA as a derivatizing reagent of diols, we investigated the impact of diol configuration on the affinity of a selection of diols to BPBA using the established LC/ESI-MS approach. We found that both cis and trans diols can be derivatized by BPBA. In conclusion, BPBA may be used as a general derivatizing reagent for the detection of vicinal diols by LC/MS.  相似文献   

6.
Electron-impact mass spectrometric procedures for locating the position of double bonds and cyclopropane rings in long-chain fatty acids are reviewed. Since unsaturation is not located directly by mass spectrometry, the properties of suitable derivatives are summarized. Epoxides are readily prepared from double bonds and on opening of the ring with various reagents useful derivatives are obtained, the most promising to date being hydroxymethoxy esters whose trimethylsilyl ethers give good mass spectra. Trimethylsilyl ethers of vicinal diols, prepared by direct hydroxylation, are recommended for the analysis of polyunsaturated fatty acid esters using combined gas chromatography-mass spectrometry. Oxymercuration-demercuration techniques are very convenient and one particular procedure can specifically locate unsaturation up to five carbons distant from the carboxyl group. An alternative approach enables the location of double bonds and cyclopropane rings in fatty acids by direct mass spectrometry of pyrrolidides. Cyclopropane rings can be positively located in fatty acid esters by mass spectrometry of isomeric ketones or methoxy derivatives prepared by chromium trioxide oxidation on poron trifluoride-catalysed methoxylation, respectively. A variety of other procedures are also considered and some guidelines are given for choosing a method to suit a particular unsaturated acid.  相似文献   

7.
Summary The alkane-induced, membrane-bound fatty alcohol oxidase of Candida tropicalis was functional with decanol as a model substrate in C8 to C12 alkanes and in cyclohexane. Optimal activity was with octane. Although some reaction took place without added water, 5–10% water gave optimal activity. A continuous spectrophotometric assay for following the enzyme activity in this system was developed. The enzyme, besides oxidizing primary long straight-chained alcohols, also oxidized long-chain diols, -hydroxy fatty acids, unsaturated fatty alcohols and branched-chained unsaturated fatty alcohols, although at diminished rates. Secondary alcohols or arylalkan-1-ols were not attacked. The K m for dodecanol was some 5000-fold higher than the K m for the same substrate when the reaction was carried out in water.  相似文献   

8.
It is important to investigate the partition behavior of hydrophilic alcohols at different process parameters in order to have a deep understanding of the salting‐out extraction technique and to design suitable downstream processes. First, phase diagram data of ethanol/ammonium sulfate at 293.15 K were obtained, and the reliability of binodal curve and tie line data were proved by Merchuk, Othmer–Tobias, and Bancroft equations, respectively. Then, the partition behavior of five short‐chain diols was studied. For different tie lines, the partition coefficient changed linearly with an increase in tie line length. The concentration of diols also had a significant effect on the partition behavior due to the similarity between diols and ethanol. Further, the effect of temperature was increased as the hydrophobicity of the diols increased, and the partition behavior of diols was correlated with their hydrophobicity, implying that the solutes with higher hydrophobicity could be extracted more effectively. These findings are useful for designing an economic and efficient salting‐out extraction process for diverse products.  相似文献   

9.
The chromatographic behavior of 1,2-, 1,3-, 1,4-, and 1,12-long-chain alkane diols and 1-O-alkylglycerols and their derivatives has been compared. Thin-layer chromatography on Silica Gel G gives poor separations of the 1,2-, 1,3-, and 1,4-alkane diols, O-alkylglycerols, and some of their isopropylidene derivatives. However, gas-liquid chromatography on 10% EGSS-X (coated on 100-120 mesh Gas-Chrom P) resolves the isopropylidenes of the alkane diols and O-alkylglycerols. We also document the formation of 1,3-alkane diols (after LiAlH(4) reduction) from 1-(14)C-labeled fatty acids incubated with mitochondrial fractions from heart and liver of rats. The labeled 1,3-alkane diol was identified by gas-liquid chromatography of its isopropylidene derivative and by its behavior after periodate oxidation. These results serve to caution investigators in the glycerol ether field against incorrect interpretation of data obtained on the incorporation of labeled fatty acids into alkyl ether bonds of glycerolipids. The methodology described points out a technique for distinguishing several types of alkane diols from O-alkylglycerols.  相似文献   

10.
The effects of a number of related diols, substituted diols and glycerol on the thermal stability of acid-soluble calf skin collagen were investigated. Thermal transition temperatures were determined by optical rotation measurement. Short-chain diols with terminal hydroxyl groups, i.e. ethylene glycol and propane-1,3-diol, stabilized the protein at all accessible concentrations. Stabilization was also observed with glycerol and diethylene glycol. Higher homologues in the diol series produced various effects, as did hydroxyl-group positional isomerism. Monoalkyl substitution of diols progressively lowered the denaturation temperature of collagen. Results are discussed in relation to possible mechanisms of perturbant action.  相似文献   

11.
Linoleic acid diol glucuronides have been isolated previously from urine of patients suffering from generalized peroxisomal disorders. Glucuronidation of linoleic acid and linoleic acid diols by human liver microsomes was studied to investigate the role of glucuronide conjugation in the metabolism of linoleic acid diols. Glucuronide products were isolated and analyzed by TLC and HPLC-MS. HPLC-MS showed ions with (m/z) corresponding to singly glucuronidated linoleic acid diols while TLC revealed that the glucuronidation was at a hydroxyl position. Kinetic analysis gave apparent K(m) values in the range of 50-200 microM and V(max) rates from 5 to 12 nmol/mg x min. These rates are substantially higher than activities seen for most endogenous hydroxylated substrates. Assays using each of the four individually purified linoleic acid diol enantiomers suggest that glucuronidation occurs at only one of the two hydroxyl groups of each enantiomer. These results show for the first time that hydroxylated fatty acids are actively glucuronidated by human liver microsomes and suggest that glucuronidation may play a significant role in the biotransformation of linoleic acid diols in humans.  相似文献   

12.
Chiral epoxides are highly valuable intermediates, used for the synthesis of pharmaceutical drugs and agrochemicals. They have broad scope of market demand because of their applications. A major challenge in modern organic chemistry is to generate such compounds in high yields, with high stereo- and regio-selectivities. Epoxide hydrolases (EH) are promising biocatalysts for the preparation of chiral epoxides and vicinal diols. They exhibit high enantioselectivity for their substrates, and can be effectively used in the resolution of racemic epoxides through enantioselective hydrolysis. The selective hydrolysis of a racemic epoxide can produce both the corresponding diols and the unreacted epoxides and vicinal diol has prompted researchers to explore their use in the synthesis of epoxides and diols with high ee values.  相似文献   

13.
Safety and regulatory issues favor increasing use of enantiopure compounds in pharmaceuticals. Enantiopure epoxides and diols are valuable intermediates in organic synthesis for the production of optically active pharmaceuticals. Enantiopure epoxide can be prepared using epoxide hydrolase (EH)-catalyzed asymmetric hydrolysis of its racemate. Enantioconvergent hydrolysis of racemic epoxides by EHs possessing complementary enantioselectivity and regioselectivity can lead to the formation of enantiopure vicinal diols with high yield. EHs are cofactor-independent and easy-to-use catalysts. EHs will attract much attention as commercial biocatalysts for the preparation of enantiopure epoxides and diols. In this paper, recent progress in molecular engineering of EHs is reviewed. Some examples and prospects of asymmetric and enantioconvergent hydrolysis reactions are discussed as supplements to molecular engineering to improve EH performance.  相似文献   

14.
Beneficial physiological effects of long-chain n-3 polyunsaturated fatty acids are widely accepted but the mechanism(s) by which these fatty acids act remains unclear. Herein, we report the presence, distribution, and regulation of the levels of n-3 epoxy-fatty acids by soluble epoxide hydrolase (sEH) and a direct antinociceptive role of n-3 epoxy-fatty acids, specifically those originating from docosahexaenoic acid (DHA). The monoepoxides of the C18:1 to C22:6 fatty acids in both the n-6 and n-3 series were prepared and the individual regioisomers purified. The kinetic constants of the hydrolysis of the pure regioisomers by sEH were measured. Surprisingly, the best substrates are the mid-chain DHA epoxides. We also demonstrate that the DHA epoxides are present in considerable amounts in the rat central nervous system. Furthermore, using an animal model of pain associated with inflammation, we show that DHA epoxides, but neither the parent fatty acid nor the corresponding diols, selectively modulate nociceptive pathophysiology. Our findings support an important function of epoxy-fatty acids in the n-3 series in modulating nociceptive signaling. Consequently, the DHA and eicosapentaenoic acid epoxides may be responsible for some of the beneficial effects associated with dietary n-3 fatty acid intake.  相似文献   

15.
In the chromoplast fraction and in the chromoplast-free fraction, obtained from Calendula officinalis ligulate flowers, the contents of individual free and ester-bound triterpene alcohols and sterols as well as the fatty acid components of the ester form were determined. It was shown that all sterols and triterpene monols in both forms occur in the two subtractions investigated, whereas all diols are localized only in the chromoplast fraction. The compositions of the fatty acids esterifying monols and sterols were similar to those esterifying diols in the chromoplasts. However, the fatty acids esterifying extra-chromoplast monols and sterols were different. This result indicates that triterpene monol esters are substrates for the biosynthesis of 3-monoesters of diols.  相似文献   

16.
通过聚乳酸二元醇和聚乳酸-聚己内酯共聚物二元醇与六亚甲基二异氰酸酯(HDI)三聚体交联反应合成了一系列生物基热固性聚氨酯(Bio-PUs)。利用傅里叶红外(FTIR)、差示扫描量热分析(DSC)、热失重分析(TGA)、万能拉伸机和细胞毒性等测试方法对获得的聚乳酸基聚氨酯进行了表征。结果表明,与聚乳酸二元醇相比,聚乳酸-聚己内酯共聚物二元醇降低了生物基热固性聚氨酯的玻璃化温度(Tg),提高了热固性聚氨酯的热稳定性;且聚乳酸-聚己内酯型聚氨酯的力学性能和形状记忆性能更为优异。其中,聚乳酸-聚己内酯共聚物二元醇分子量为3 000时得到的热固性聚氨酯(Bio-PU2-3000)的杨氏模量为277.7 MPa,伸长率为230%;聚乳酸-聚己内酯共聚物二元醇分子量为1 000得到的热固性聚氨酯(Bio-PU2-1000)在人体体温下的形变回复时间仅为93 s。另外,通过显微镜观察到细胞在含聚乳酸基热固性聚氨酯的培养液中生长状态良好,表明制备得到的生物基聚氨酯无细胞毒性。  相似文献   

17.
Scafato P  Superchi S 《Chirality》2010,22(Z1):E3-10
We describe herein the use of a flexible biphenyl moiety as efficient chirality probe in the assignment of the absolute configuration (AC) of aliphatic, non-chromophoric diols. The diols are transformed in the corresponding biphenyl dioxolanes in which the biphenyl system has either a P or M torsion depending on the chirality of the diol. As the correlation between biphenyl torsion and diol AC has been established and the sense of torsion is revealed by the sign of the biphenyl A band at 250 nm in the CD spectrum of the dioxolane, then the diols AC can be assigned simply looking at the CD spectra of these derivatives. This approach proved to be general, straightforward, and reliable for anti 1,2- 1,3-, and 1,4-diols bearing both one and two stereogenic centers and for cyclic syn 1,2-diols.  相似文献   

18.
C2–C4 diols classically derived from fossil resource are very important bulk chemicals which have been used in a wide range of areas, including solvents, fuels, polymers, cosmetics, and pharmaceuticals. Production of C2–C4 diols from renewable resources has received significant interest in consideration of the reducing fossil resource and the increasing environmental issues. While bioproduction of certain diols like 1,3-propanediol has been commercialized in recent years, biosynthesis of many other important C2–C4 diol isomers is highly challenging due to the lack of natural synthesis pathways. Recent advances in synthetic biology have enabled the de novo design of completely new pathways to non-natural molecules from renewable feedstocks. In this study, we review recent advances in bioproduction of C2–C4 diols, focusing on new metabolic pathways and metabolic engineering strategies being developed. We also discuss the challenges and future trends toward the development of economically competitive processes for bio-based diol production.  相似文献   

19.
Epoxides and fatty acid diols derived from arachidonate by the action of cytochrome P-450 appear in human urine and have biological activities. Dietary eicosapentaenoic acid gives rise to prostaglandins in vivo, but vascular effects of n-3 supplements do not all correlate with altered types or amounts of in vivo cyclooxygenase products. We investigated whether dietary eicosapentaenoic acid could also be metabolized by cytochrome P-450, by assessing the excretion of its vicinal diols. Utilizing gas chromatography/negative chemical ionization mass spectrometry, we have found that humans ingesting n-3 fatty acids excrete vicinal diols of eicosapentaenoic acid in substantial quantities.  相似文献   

20.
Summary The esterification of various hydrophilic diols with fatty acids catalyzed by LipolaseTM was carried out in water-in-oil (w/o) microemulsion systems stabilized with sodium(bis-2-ethylhexyl)sulphosuccinate (AOT) as surfactant in isooctane. Mono- and di-esters were selectively synthesized with high reaction rates. The product distribution depends on substrates concentration. Microemulsions appear to be an effective and fast system for esterification of diols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号