共查询到20条相似文献,搜索用时 0 毫秒
1.
Changes in hemicellulose-degrading enzymes during development and ripening of Japanese pear fruit 总被引:2,自引:0,他引:2
Seasonal changes in some hemicellulose-degrading enzymes inJapanese pear fruit were studied in connection with fruit development,softening and over-ripening. These enzyme activities per fruitfresh weight were very high during the cell division and preenlargementstages, and greatly decreased in the enlargement stage. Thereafter,they again exhibited clear increase with ripening. These enzymeactivities per cell (DNA content basis), however, were roughlyconstant throughout the cell division, pre-enlargement and enlargementstages. These cell wall degrading enzymes were divided intothe following three groups by their alteration patterns withripening, i.e. the first group including polygalacturonase,exocellulase and mannanase which seems to be associated withfruit softening, the second one including arabanase, ß-glucosidaseand endocellulase and the third one including xylanase, ß-xylosidaseand ß-galactosidase, both of which seem to functionin cellular breakdown with over-ripening.
1 This paper is contribution A-87, Fruit Tree Research Station. (Received August 4, 1978; ) 相似文献
2.
3.
Changes in the phosphorylation state of sucrose synthase during development of Japanese pear fruit 总被引:6,自引:0,他引:6
Changes in the protein level and phosphorylation state of sucrose synthase (SS) were studied throughout the development of Japanese pear fruit. The level of SS protein was high at the young stage, dropped with fruit enlargement and increased again with fruit maturation. Antibody against phospho-Ser reacted with SS from young fruit, but did not react with SS that had been dephosphorylated by alkaline phosphatase (AP). The activities of SS isozymes were separated by ion-exchange chromatography. It was found that the fluctuation in SS activity was caused by two SS isozymes (SSI and SSII); (SSI reacted with antibody against phospho-Ser, while SSII did not. Phosphorylation of SS affected its kinetic parameters, that is, the affinity of phosphorylated SS for UDP was higher than that of dephosphorylated SS, while it was the contrary for UDP-glucose. The reaction of dephosphorylated SS was inclined toward sucrose synthesis more than that of phosphorylated SS. Phosphorylated SS protein was most abundant in young fruit, but decreased with fruit development, while non-phosphorylated SS protein increased in mature fruit. These results suggest that SS isoforms may be affected by post-translational modifications such as phosphorylation, and that the regulation of phosphorylation may potentially control the properties and functions of SS throughout the development of Japanese pear fruit. 相似文献
4.
1. Based on changes in DNA content per whole fruit and wholefruit weight during development, the development of Japanesepear fruit (cultivars Hosui and 93-3) was divided into celldivision, pre-enlargement, enlargement and ripening stages. 2. A climacteric rise in respiration with ethylene evolutionwas recognized although it was not very marked. 3. The ratio of pectinic acid to total pectin content increasedwith ripening. Total pectin content on a DNA content basis increasedclearly in the pre-enlargement and ripening stages, but roughlyremained constant in the cell division and enlargement stages. 4. Changes in the activities of cell wall-degrading enzymes,i.e. endocellulase, exocellulase, polygalacturonase, pectinmethylesterase and ß-galactosidase, were investigatedduring fruit growth. The activities per fresh weight of allenzymes, except exocellulase, were fairly high in the cell divisionand pre-enlargement stages, decreased in the enlargement stage,and increased remarkably with ripening or overripening, exceptfor pectin methylesterase. Endocellulase was present as an acidtype and neutral types. The former was more active than thelatter in the cell division and pre-enlargement stages, butwith ripening the reverse was found. On the other hand, theactivities, on a DNA content basis, in all the enzymes wereroughly constant, not decreasing during cell division, pre-enlargementand enlargement stages, but increasing extensively with ripening.That is, the lowering of these enzyme activities per g freshweight in the enlargement stage seemed not to be due to inactivationor stimulation of enzyme degeneration. The extensive enhancementsof cell wall-degrading enzyme activities with ripening or overripeningseem to be closely related to the softening or pithiness ofthe fruit.
1 This paper is Contribution A-63, Fruit Tree Res. Sta. (Received June 11, 1976; ) 相似文献
5.
After fruit development has been triggered by pollination, the abscission zone (AZ) in the pedicel strengthens its adhesion to keep the fruit attached. Unpollinated flowers are shed at their respective AZs, whereas an enlargement of the same tissue is observed in pollinated flowers. After the fruit has developed and is fully ripened, shedding occurs easily at the AZ, indicating an acceleration of abscission. Cell wall degradation and synthesis may play important roles in these processes; however, little is understood. In this report, we have visualized changes in polysaccharide distribution in the AZs of pollinated versus unpollinated flowers and in the ripened fruits using immunohistochemistry. During floral abscission, a large increase was observed in LM15 labeling of xyloglucan specifically at the AZ in the abscising pedicel. LM5 and LM6 labeling of galactan and arabinan, respectively, also increased—LM5 throughout the pedicel and LM6 at the basal side of the AZ. The results suggest that xyloglucan, pectic galactan and arabinan play key roles in the abscission process. During fruit abscission, unlike in floral abscission, no AZ-specific cell wall polysaccharide deposition was observed; however, high autofluorescence was seen in the AZ of over-ripe fruit pedicels, suggesting secondary cell wall synthesis and lignification of the AZ prior to fruit abscission. 相似文献
6.
Non-cellulosic neutral sugar composition of cell walls from seventeen fruit types were analysed during ripening. Galactose was the major non-cellulosic neutral sugar in cell walls of cucurbit and solanaceous fruit, xylose was the predominant non-cellulosic neutral component of berries, and arabinose was the major non-cellulosic component of pome fruits. The major non-cellulosic neutral sugar residue in cell walls of stone fruits varied. In nectarine and peach, plum, and apricot, the major sugar was arabinose, galactose, and xylose, respectively. In 15 of the 17 types of fruit, a net loss of non-cellulosic neutral sugar residues occurred during ripening. No net loss occurred in plums and cucumbers. A net loss of cell wall galactose and/or arabinose occurred in 14 of the types of fruit. Xylose was the major neutral sugar residue lost from walls of apricot during ripening. In general, berry cell walls were comparatively low in galactose and arabinose content. 相似文献
7.
Softening of mango fruit has been investigated by analysis of ripening related changes in the composition of the fruit cell walls. There is an apparent overall loss of galactosyl and deoxyhexosyl residues during ripening, the latter indicating degradation of the pectin component of the wall. The loss of galactose appears to be restricted to the chelator soluble fraction of the wall pectin, whilst loss of deoxyhexose seems to be more evenly distributed amongst the pectin. The chelator soluble pectin fraction is progressively depolymerised and becomes more polydisperse during ripening. These changes are similar to those occurring in other fruit and are related to the action of wall hydrolases during ripening. 相似文献
8.
Antonio Cutillas-Iturralde Ignacio Zarra Ester P. Lorences 《Physiologia plantarum》1993,89(2):369-375
Pectins from persimmon ( Diospyros kaki L.) fruit pericarp were sequentially extracted with 0. 05 M trans -1,2-diaminocyclohexane-N,N, N', N'-tetraacetic acid (CDTA), 0. 05 M Na2 CO3 (1°C) and Na2 CO3 (20°C) and the carbohydrate composition and metabolism during development determined. Young persimmon fruits contained a large proportion of pectins, 46% by dry weight, that decreased to 20% with ripening. This decrease occurred in the CDTA and Na2 CO3 (1°C) fractions, mainly composed of uronic acids, and represents a net loss of uronic acids, arabinose and galactose. The amount of non-cellulosic neutral sugars was especially high in the Na2 CO3 (20°C) fraction. The loss of pectins was also accompanied by a depolymerisation of the polysaccharides extracted in the three pectic fractions. However, none of these changes can be attributed to the action of polygalacturonase activity. Proteins were extracted from the pericarp tissue, but endopolygalacturonase (EC 3. 2. 1. 15) activity, determined as a decrease in viscosity of polygalacturonic acid, was not observed in the extract. Determination of exopolygalacturonase (EC 3. 2. 1. 67) activity by measuring the release of reducing groups from polygalacturonic acid was also negative. The results presented indicate that polygalacturonase is not responsible for the metabolism of pectins during persimmon fruit ripening. 相似文献
9.
Glycosyl-linkage composition of tomato fruit cell wall hemicellulosic fractions during ripening 总被引:4,自引:0,他引:4
Hemicelluloses were extracted from isolated tomato ( Lycopersicon esculentum Mill. cv. Rutgers) pericarp cell wall material at 3 different stages of ripeness with 4 M and 8 M KOH. Little change in molecular weight or composition of 4 M KOH-extracted material was observed during ripening. However, the composition of 8 M KOH-extracted material changed, and a relative increase in polymers of < 40 kDa was observed during ripening. Changes in glycosyl linkage composition of the 8 M KOH hemicellulosic material were detected, including increases in 4-linked mannosyl, 4,6-linked mannosyl, and 4-linked glucosyl, and decreases in 5-linked arabinosyl residues in polymers of < 40 kDa, and decreases in terminal glocosyl residues in polymers of > 40 kDa. These data may indicate that de novo hemicellulose synthesis occurs throughout tomato fruit ripening, even at the red ripe stage. 相似文献
10.
Ultrastructural changes in the cell walls of ripening apple and pear fruit 总被引:10,自引:1,他引:10 下载免费PDF全文
Ultrastructural changes in the cell walls of “Calville de San Sauveur” apples (Malus sylvestris Mill) and “Spadona” pear (Pyrus communis L.) fruit were followed during ripening. In apple, structural alterations in cell walls became apparent at advanced stages of softening and showed predominantly dissolution of the middle lamella. In pears softening was also associated with the dissolution of the middle lamella, and in addition a gradual disintegration of fibrillar material throughout the cell wall. In fully ripe fruit almost all of the fibrillar arrangement in the cell wall was lost. Application of enzyme solutions containing polygalacturonase and cellulase to tissue discs from firm pear fruit led to ultrastructural changes observed in naturally ripening pears. In apple polygalacturonase alone was sufficient to dissolve the middle lamella region of the cell walls, as was also found to occur in naturally ripening fruit. In both apple and pear the cell wall areas containing plasmodesmata maintained their structural integrity throughout the ripening process. At advanced stages of ripening vesicles appeared in the vicinity of plasmodesmata. 相似文献
11.
Szymańska-Chargot Monika Chylińska Monika Pieczywek Piotr M. Rösch Petra Schmitt Michael Popp Jürgen Zdunek Artur 《Planta》2016,243(4):935-945
Planta - Du ring on-tree ripening, the pectin distribution changed from polydispersed in cell wall to cumulated in cell wall corners. During apple storage, the pectin distribution returned to... 相似文献
12.
Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening 总被引:2,自引:0,他引:2
Orfila C Huisman MM Willats WG van Alebeek GJ Schols HA Seymour GB Knox JP 《Planta》2002,215(3):440-447
The Cnr ( C olourless n on- r ipening) tomato ( Lycopersicon esculentum Mill.) mutant has an aberrant fruit-ripening phenotype in which fruit do not soften and have reduced cell adhesion between pericarp cells. Cell walls from Cnr fruit were analysed in order to assess the possible contribution of pectic polysaccharides to the non-softening and altered cell adhesion phenotype. Cell wall material (CWM) and solubilised fractions of mature green and red ripe fruit were analysed by chemical, enzymatic and immunochemical techniques. No major differences in CWM sugar composition were detected although differences were found in the solubility and composition of the pectic polysaccharides extracted from the CWM at both stages of development. In comparison with the wild type, the ripening-associated solubilisation of homogalacturonan-rich pectic polysaccharides was reduced in Cnr. The proportion of carbohydrate that was chelator-soluble was 50% less in Cnr cell walls at both the mature green and red ripe stages. Chelator-soluble material from ripe-stage Cnr was more susceptible to endo-polygalacturonase degradation than the corresponding material from wild-type fruit. In addition, cell walls from Cnr fruit contained larger amounts of galactosyl- and arabinosyl-containing polysaccharides that were tightly bound in the cell wall and could only be extracted with 4 M KOH, or remained in the insoluble residue. The complexity of the cell wall alterations that occur during fruit ripening and the significance of different extractable polymer pools from cell walls are discussed in relation to the Cnr phenotype. 相似文献
13.
14.
Changes in grape seed polyphenols during fruit ripening 总被引:9,自引:0,他引:9
The quantity and characterization of extracted flavan-3-ol monomers and procyanidins was determined in seeds from Vitis vinifera cv. Cabernet Sauvignon berries, over the course of ripening and at different levels of vine water status. The per berry extractive yield of all polyphenols decreased with maturity, and followed second-order kinetics. The flavan-3-ol monomers decreased most rapidly, followed by the procyanidin extension units and finally, the terminal units. The relative proportion of procyanidin extension units did not vary with maturity. During fruit ripening, the mean degree of polymerization of extracted procyanidins is unchanged when analyzed intact by HPLC, but decreases by thiolytic degradation. The proportion of extracted procyanidins resistant to acid catalyzed thiolysis increased with maturity. Changes in vine water status affected polyphenol amounts, indicating that cultural practices can be used to influence composition. Oxidation of the seed polyphenols during fruit ripening, could explain these observations. 相似文献
15.
Changes in arabinoxylan content and composition during development of wheat seedlings were investigated. The cell walls isolated from the seedlings showed an increasing content of arabinoxylan during development, which could be correlated to increased activity of xylan synthase and arabinoxylan arabinosyltransferase. Arabinoxylan changed from initially having a high degree of arabinose substitution to a much lower degree of substitution. beta-Glucan was present in the walls at the early stages of development, but was actively degraded after day 4. Increased deposition of arabinoxylan did not take place until beta-glucan had been fully degraded. Ferulic and p-coumaric acid esters were present at all points but increased significantly from day 3 to 6, where lignification began. Ferulic acid dimers did not appear in the cell wall until day three and the different ferulic acid dimers varied in the course of accumulation. The ratio of ferulic acid dimers to free ferulic acid was maximal at the time when the wall had been depleted for beta-glucan, which had not yet been fully replaced by arabinoxylan. This pattern suggests a role for ferulic acid dimers in stabilizing the wall during the transition from a flexible to a more rigid structure. To investigate if the same changes could be observed within a single seedling, 7 day old seedlings were divided into four sections and the walls were analyzed. Some of the changes observed during the seedling development could also be observed within a single seedling, when analyzing the segments from the elongation zone at the base to the top of the leaf. However, the expanding region of older seedlings was much richer in hydroxycinnamates than the expanding region of younger seedlings. Diferulic acids are stabilizing the wall in the transition phase from an expanding to a mature wall. This transition can take place in different manners depending on the cell and tissue type. 相似文献
16.
Softening of the flesh and the rise in ethylene evolution and respiration associated with ripening in pear (Pyrus communis L.) fruit was delayed when mannose was vacuum infiltrated into intact fruit. The extent of delay could be modified by altering the concentration or the volume of mannose applied to the fruit. Inhibition of ripening was associated with phosphorylation of mannose to mannose 6-phosphate (M6P), and accumulation of M6P was associated with lowered levels of inorganic phosphate (Pi), glucose 6-phosphate (G6P), and ATP in the fruit tissue. Subsequently, however, as the M6P was metabolized, the levels of Pi, G6P, and ATP increased and ripening processes were concomitantly released from inhibition. Hence, the degree of inhibition by mannose or the release from inhibition was related to the level of M6P in the fruit and its rate of metabolism. The data provide correlative evidence to support a view that one inhibitory effect of mannose is depletion of Pi in the cell as a result of phosphorylation of mannose to M6P. Inhibition of ripening by mannose was not alleviated by co-application of glucose as a competitive substrate for the hexokinase(s), or by Pi, presumably the depleted metabolite. Also, incubation of tissue disks with M6P resulted in inhibition of ethylene production and respiration. The structural analogs of mannose, glucosamine, and 2-deoxyglucose, which have been shown to mimic mannose action in several plant tissues, did not cause inhibition of ripening of pear fruit comparable with that associated with mannose. Both analogs stimulated respiration, and glucosamine caused only a small inhibition of softening and ethylene evolution. Another mannose analog, α-methylmannoside, did inhibit fruit ripening though to a lesser extent than mannose. Its influence was also associated with accumulation of M6P and a decrease of Pi levels. We conclude that the mannose effect may, in part, be due to M6P toxicity, as well as by depletion of Pi. 相似文献
17.
Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening 总被引:1,自引:0,他引:1 下载免费PDF全文
Eriksson EM Bovy A Manning K Harrison L Andrews J De Silva J Tucker GA Seymour GB 《Plant physiology》2004,136(4):4184-4197
The Colorless non-ripening (Cnr) mutation in tomato (Solanum lycopersicum) results in mature fruits with colorless pericarp tissue showing an excessive loss of cell adhesion (A.J. Thompson, M. Tor, C.S. Barry, J. Vrebalov, C. Orfila, M.C. Jarvis, J.J. Giovannoni, D. Grierson, G.B. Seymour [1999] Plant Physiol 120: 383-390). This pleiotropic mutation is an important tool for investigating the biochemical and molecular basis of cell separation during ripening. This study reports on the changes in enzyme activity associated with cell wall disassembly in Cnr and the effect of the mutation on the program of ripening-related gene expression. Real-time PCR and biochemical analysis demonstrated that the expression and activity of a range of cell wall-degrading enzymes was altered in Cnr during both development and ripening. These enzymes included polygalacturonase, pectinesterase (PE), galactanase, and xyloglucan endotransglycosylase. In the case of PE, the protein product of the ripening-related isoform PE2 was not detected in the mutant. In contrast with wild type, Cnr fruits were rich in basic chitinase and peroxidase activity. A microarray and differential screen were used to profile the pattern of gene expression in wild-type and Cnr fruits. They revealed a picture of the gene expression in the mutant that was largely consistent with the real-time PCR and biochemical experiments. Additionally, these experiments demonstrated that the Cnr mutation had a profound effect on many aspects of ripening-related gene expression. This included a severe reduction in the expression of ripening-related genes in mature fruits and indications of premature expression of some of these genes in immature fruits. The program of gene expression in Cnr resembles to some degree that found in dehiscence or abscission zones. We speculate that there is a link between events controlling cell separation in tomato, a fleshy fruit, and those involved in the formation of dehiscence zones in dry fruits. 相似文献
18.
Cheng Xue Jia‐Long Yao Meng‐Fan Qin Ming‐Yue Zhang Andrew C. Allan De‐Fu Wang Jun Wu 《Plant biotechnology journal》2019,17(1):103-117
Lignified stone cells substantially reduce fruit quality. Therefore, it is desirable to inhibit stone cell development using genetic technologies. However, the molecular mechanisms regulating lignification are poorly understood in fruit stone cells. In this study, we have shown that microRNA (miR) miR397a regulates fruit cell lignification by inhibiting laccase (LAC) genes that encode key lignin biosynthesis enzymes. Transient overexpression of PbrmiR397a, which is the miR397a of Chinese pear (Pyrus bretschneideri), and simultaneous silencing of three LAC genes reduced the lignin content and stone cell number in pear fruit. A single nucleotide polymorphism (SNP) identified in the promoter of the PbrmiR397a gene was found to associate with low levels of fruit lignin, after analysis of the genome sequences of sixty pear varieties. This SNP created a TCA element that responded to salicylic acid to induce gene expression as confirmed using a cell‐based assay system. Furthermore, stable overexpression of PbrmiR397a in transgenic tobacco plants reduced the expression of target LAC genes and decreased the content of lignin but did not change the ratio of syringyl‐ and guaiacyl‐lignin monomers. Consistent with reduction in lignin content, the transgenic plants showed fewer numbers of vessel elements and thinner secondary walls in the remaining elements compared to wild‐type control plants. This study has advanced our understanding of the regulation of lignin biosynthesis and provided useful molecular genetic information for improving pear fruit quality. 相似文献
19.
Seven cDNAs, designated PcExp1 to PcExp7 , encoding expansin homologues, were isolated from mature pear fruit and their expression profiles were investigated in ripening fruit and other tissues, and in response to ethylene. Accumulation of PcExp2 , - 3, - 5 and - 6 mRNA increased markedly with fruit softening and then declined at the over-ripe stage. Treatment of fruit at an early ripening stage with 1-methylcyclopropene (MCP), an inhibitor of ethylene action, suppressed ethylene biosynthesis, fruit softening and the accumulation of the expansin mRNAs. Conversely, propylene treatment at the preclimacteric stage induced accumulation of the same four expansin genes, as well as ethylene production and fruit softening. The expression patterns correlated with alteration in the rate and extent of fruit softening. The abundance of PcExp1 mRNA increased at the late expanding phase of fruit development and further increased during ripening, whereas PcExp4 mRNA levels were constant throughout fruit growth and ripening. The MCP and propylene treatments had little effect on PcExp1 and PcExp4 expression. PcExp7 was expressed in young but not mature fruit. PcExp4 and PcExp6 mRNA was also detected in flowers. The accumulation of PcExp4, -5, -6 and - 7 mRNA was more abundant in young growing tissues, but not in fully expanded tissues, suggesting roles for these genes in cell expansion. These results demonstrate that characteristically, multiple expansin genes show differential expression and hormonal regulation during pear fruit development and at least six expansins show overlapping expression during ripening. 相似文献
20.
Galactose loss and fruit ripening: high-molecular-weight arabinogalactans in the pectic polysaccharides of fruit cell walls 总被引:7,自引:0,他引:7
Cell wall material (CWM) was prepared from nine fruit species at two ripening stages (unripe and ripe) and extracted sequentially
with 0.05 M trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA), 0.05 M Na2CO3 and 4 M KOH. Each solubilised fraction and the CWM-residue remaining after 4 M KOH extraction was analysed for non-cellulosic
sugar composition. A common pattern of distribution for polyuronide and pectin-associated neutral sugar was observed for all
unripe fruit. Most polyuronide was extracted in the CDTA/Na2CO3 fractions while 70–93% of the neutral sugar was located on pectic polysaccharides in the 4 M KOH-soluble and CWM-residue
fractions. During ripening, most of the galactose was lost from pectic polysaccharides in the CWM-residue. Partial solubilisation
of these polysaccharides was achieved by treating the CWM-residue with endopolygalacturonase. The solubilised polysaccharides
were separated into two fractions by ion-exchange chromatography. One of these contained polysaccharides with average molecular
weights of 400 kDa or larger and consisted of between 70 and 90% arabinogalactan. The galactosyl residues were 80–90% β-1→4
linked, indicating largely unbranched side-chains. The arabinosyl residues were distributed among terminal, 3-, 5-, 2,5-,
and 2,3,5-linked residues, indicating a highly ramified structure. The results are discussed with regard to the relationship
between pectin solubilisation and galactose loss and their respective contribution to fruit softening.
Received: 28 January 1997 / Accepted: 11 March 1997 相似文献