首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The stomach, small intestine and large intestine of the toad, Bufo marinus, were processed for formaldehyde-induced fluorescence histochemistry. After extrinsic denervation or pretreatment with 6-hydroxydopamine to remove catecholamine fluorescence, yellow fluorescence typical of 5-hydroxytryptamine was observed in neurones in the small intestine only. The cell bodies and their processes were confined to the myenteric plexus. Additional pretreatment with 5-hydroxytryptamine enhanced the fluorescence of neurones in the small intestine and revealed yellowfluorescent nerve fibres, but not cell bodies, in the longitudinal and circular muscle layers and myenteric plexus of the large intestine. No fluorescent neurones were observed in the stomach. Following reserpine treatment, which removed native yellow fluorescence in the small intestine, exposure to 5-hydroxytryptophan produced yellow fluorescence in axons in both small and large intestine; exposure to tryptophan never restored fluorescence. The neurotoxin, 5,7-dihydroxytryptamine had no effect on the distribution of yellow-fluorescent neurones in the small and large intestine. No 5-HT-containing mast cells were present in either the small or large intestine. Thin layer chromatography with three different mobile phases showed a 5-hydroxytryptamine-like compound in extracts of mucosa-free small and large intestine but not of stomach.  相似文献   

2.
The structure of the nerve fibres in the intact and neurally isolated intestine of the cat was studied after 6-OHDA treatment by fluorescence and electron microscopy. A gradual disappearance of green fluorescence in the monoaminergic fibers was observed. Degeneration of nerve fibres containing 30--60 nm agranular and 30--60 nm densecore (granular) vesicles could be seen in all layers of the small intestine. Sporadically, degeneration of the presynaptic elements occurred also in the synapses of myenteric ganglia. A large number of degenerating fibres could be observed in close relation to blood vessels. These were thought to be monoaminergic because 6-OHDA selectively affected their terminals. In the chronically isolated small intestine degenerated nerve processes could not be observed following 6-OHDA treatment. It is concluded that the intrinsic nerve elements do not contain monoamines. Accordingly, the previously observed yellow fluorescence of the nerve elements of the isolated small intestine might be due to some other kind of neurotransmitter, possibly tryptamine.  相似文献   

3.
Summary The distribution of 5-hydroxytryptamine in the gut of several species of birds and reptiles, and of a prototherian mammal, the platypus, was studied using a monoclonal antibody. 5-Hydroxytryptamine-like immunoreactivity was found in enterochromaffin cells and, in birds, in thrombocytes. Immunoreactivity was not found in enteric neurons fixed immediately after dissection. A detailed study was made on one avian species, the budgerigar. Following incubation of intestine in physiological solution, immunore-activity was found in nerve fibres in the gut wall that was more marked after incubation with the monoamine oxidase inhibitor pargyline. These fibres took up exogenous 5-hydroxytryptamine. Similar fibres were found in the intestinal nerves and in perivascular plexuses on mesenteric arteries. Both the uptake of 5-hydroxytryptamine and the appearance of neuronal immunoreactivity after incubation were inhibited by the amine uptake inhibitors desmethylimipramine or fluoxetine. Fibres taking up 5-hydroxytryptamine were damaged by pretreatment with 6-hydroxydopamine. It was concluded that the fibres showing immunoreactivity after incubation were adrenergic fibres that had taken up 5-hydroxytryptamine released in vitro from enterochromaffin cells or thrombocytes. These, and more limited observations made on the other species, suggest that birds, reptiles and prototherian mammals lack enteric neurons that use 5-hydroxytryptamine as a transmitter substance.  相似文献   

4.
Summary The formaldehyde-induced fluorescence technique had shown 5-hydroxytryptamine-containing enteric neurons in the intestine of the teleost Platycephalus bassensis, but did not reveal such neurons in the intestine of Tetractenos glaber or Anguilla australis. Re-examination of these animals with 5-hydroxytryptamine immunohistochemistry showed immunoreactive enteric neurons in the intestine of all three teleost species. The 5-hydroxytryptamine-containing enteric neurons showed essentially the same morphology in all species examined: the somata were situated in the myenteric plexus, extending down into the circular muscle layer, but none were found in the submucosa; processes were found in the myenteric plexus, the circular muscle layer and the lamina propria. It was concluded that the neurons may innervate the muscle layers or the mucosal epithelium, but were unlikely to be interneurons. In a range of teleosts, enterochromaffin cells were found in the intestine of only those species in which the formaldehyde technique did not visualize neuronal 5-hydroxytryptamine. Available evidence suggests that, in vertebrates, 5-HT-containing enterochromaffin cells are lacking only where there is an innervation of the gut mucosa by nerve fibres containing high concentrations of 5-HT.  相似文献   

5.
The neuron morphology and distribution of four putative transmitters were investigated in the myenteric plexus of frog (Rana esculenta) midgut. The gross morphology was revealed by NADH-diaphorase histochemistry, and the shape of the neurons by silver impregnation. Nerve cells had heterogeneous distribution: they either formed ganglia or placed as solitary neurons in the duodenum, while in the rest of the midgut only solitary neurons were observed. Three morphologically distinct cell types were revealed by silver impregnation: mainly type I and type II neurons cells were seen in the duodenum, while the rest of the intestine contained type II and III cells. Catecholamine fluorescence was revealed in nerve fibres in the duodenum, while few small nerve cells were observed in the small intestinal region. Acetylcholinesterase histochemistry showed strongly reactive nerve cells that were associated with the main fibre bundles in the duodenum. Only longitudinally oriented fibres and occasionally stained neurons were seen in the small intestine. Substance P immunocytochemistry revealed an extensive plexus, which contained a moderate number of stained perikarya in the full length of the midgut. Gamma-aminobutyric acid showed non-uniform distribution in the two parts of the midgut: a stronger and more regular fibre staining was found in the duodenum then in the rest of the intestine. Ultrastructural observations demonstrated that intrinsic neurons received synaptic inputs from the profiles contained agranular vesicles, while "P"-type profiles established close contacts with neurons. Both profile types formed close contacts with the smooth muscle cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A novel technique for rapid anterograde labelling of cut axons in vitro was used to visualise the peripheral branches of mesenteric nerve trunks supplying the guinea-pig small intestine. Biotinamide, dissolved in an artificial intracellular solution, was applied to the cut ends of the mesenteric nerves and the tissue was maintained in organ culture overnight. Labelled nerve fibres were visualised by fluorescein isothiocyanate (FITC)-conjugated streptavidin. Intense staining of nerve fibres and terminal varicosities in the ganglia and internodal strands of the myenteric plexus was achieved up to 15 mm from the application site. Filled fibres formed baskets around some myenteric nerve cell bodies, suggesting target-specific neurotransmission. When combined with multiple-labelling immunohistochemistry for tyrosine hydroxylase (TH), calcitonin gene-related protein (CGRP) or choline acetyltransferase (ChAT), most anterogradely labelled nerve fibres, and many pericellular baskets, were found to be TH immunoreactive, indicating their postganglionic sympathetic origin. Double-labelling immunohistochemistry revealed that the postganglionic sympathetic pericellular baskets preferentially surrounded 5-hydroxytryptamine (5-HT)-handling myenteric neurons. Some biotinamide-filled fibres were CGRP immunoreactive, and are likely to originate from spinal sensory neurons. We describe for the first time many pericellular baskets labelled from the mesenteric nerves which were ChAT immunoreactive. Retrogradely filled intestinofugal nerve cell bodies were also observed, all of which had a single axon arising from a small nerve cell body with short filamentous or lamellar dendrites. Many of these cells were ChAT immunoreactive. This in vitro technique is effective in identifying the fine arrangement of nerve terminals arising from nerve trunks in the periphery.  相似文献   

7.
The myenteric plexus of the domestic fowl (Gallus domesticus) small intestine was studied by means of silver staining, glyoxylic acid-induced fluorescence, the modified Koelle-Friedenwald method for the detection of acetylcholinesterase, NADH-diaphorase techniques and the unlabelled antibody method involving the use of an antiserum raised against GABA conjugated by glutaraldehyde to bovine serum albumin. The majority of the perikarya were in the ganglia, with an average density of 3370 +/- 942 nerve cells/cm2. Cholinesterase-positive and a few GABA-immunoreactive nerve cell bodies were seen in the myenteric ganglia, while fluorescent ganglion cells were not observed. In addition to AChE and GABA-positive nerve fibres, a rich fluorescent network of varicose and nonvaricose nerve fibres was detected, pointing to the presence of an extrinsic aminergic system in the domestic fowl myenteric plexus. Electron microscopic observations on nerve cells, axon profiles and varicosites with various vesicle populations were in good agreement with the histochemical findings.  相似文献   

8.
Summary Chains of segmental ganglia and various peripheral tissues from the leech (Hirudo medicinalis) were screened as whole-mount preparations for the presence of 5-hydroxytryptamine-like immunoreactivity. The gut was richly supplied with immunoreactive nerve fibres. Plexus of fibres, numerous of which were varicose, were found in the crop, with many immunopositive nerve cell bodies in the posterior region and a few in the anterior region. The intestine contained a few longitudinally oriented nerve fibres, while the rectum contained a dense network of non-varicose and varicose fibres. Fine immunopositive fibres were associated with the lateral blood vessel and reproductive organs. Many immunopositive nerve fibres ran in each of the paired connectives linking the segmental ganglia, and two fine varicose fibres were seen in Faivre's nerve. At least two immunopositive processes left each lateral segmental nerve and branched repeatedly, with many varicosities on the distal branches. The dorso-ventral and longitudinal body wall muscles both contained immunoreactive fibres, the plexus being more dense in the former muscle. The possible roles of the immunoreactive nerve fibres demonstrated in the various tissues of the leech have been discussed in relation to the known peripheral effects of serotoninergic neurone stimulation in the leech and to the actions of exogenously applied 5-hydroxytryptamine in these and other invertebrate tissues.  相似文献   

9.
Fiedler A  Schipp R 《Tissue & cell》1991,23(6):813-819
The innervation of the branchial heart of Sepia officinalis was examined using TEM and glyoxylic acid induced fluorescence. In the cardiac ganglion and in cardiac nerves bluish-green fluorophores were seen associated with perikarya and varicose nerve fibres. Microspectrofluorometric analysis provided clear evidence that monoaminergic neurons in the branchial heart contain only catecholamines. Considering pharmacological data, it is more than likely that 5-hydroxytryptamine (serotonin) is not present in this system.  相似文献   

10.
Synopsis Sympathetic ganglia of 13 to 19-week-old human foetuses were cultured in small pieces with and without nerve growth factor for up to 5 weeksin vitro. The cultures were studied using phase-contrast, fluorescence and electron microscopy. Monoamines were demonstrated with the formaldehyde-induced fluorescence method, with and without pretreatment of the cultures with catecholamines or monoamine oxidase inhibitor.In the long-term cultures, primitive sympathetic cells, sympathicoblasts of types I and II, and young sympathetic neurons showed a fine structure identical to that described earlierin vivo. There were virtually no satellite or Schwann cells in the cultures. The neurons showed a considerable capacity to grow new nerve fibres in culture, even without nerve growth factor. Nerve terminals with accumulations of other nervous structures. Large granular vesicles were regularly found in the sympathicoblasts after glutaraldehyde-osmium tetroxide fixation. After permanganate fixation, dense-cored vesicles typical of adrenergic neurons were not seen, either in the perikarya, or in the processes, although it was possible to demonstrate specific fluorescence. No small intensely fluorescent (SIF) cells were observed.Variable formaldehyde-induced fluorescence was observed in the nerve cell perikarya and nerve fibres. The intensity of the fluorescence increased after treatment of the cultures with monoamine oxidase inhibitor and after incubation with catecholamines.  相似文献   

11.
The neurochemical composition of nerve fibres and cell bodies in the myenteric plexus of the proventriculus, stomach and small and large intestines of the golden hamster was investigated by using immunohistochemical and histochemical techniques. In addition, the procedures for localising nitric-oxide-utilising neurones by histochemical (NADPH-diaphorase) and immunohistochemical (nitric oxide synthase) methods were compared. The co-localisation of vasoactive intestinal polypeptide and nitric oxide synthase in the myenteric plexus of all regions of the gut was also assessed. The results demonstrated the presence of nerve fibres and nerve cell bodies immunoreactive to protein gene product, vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, tyrosine hydroxylase, 5-hydroxytryptamine and nitric oxide synthase in all regions of the gastrointestinal tract examined. The pattern of distribution of immunoreactive nerve fibres and nerve cell bodies containing the above markers was found to vary in different regions of the gut. Myenteric neurones and nerve fibres containing immunoreactivity to nitric oxide synthase and NADPH-diaphorase reactivity, however, were shown to have an identical distribution throughout the gut. In contrast to some studies on the guinea-pig and rat, the co-existence of vasoactive intestinal polypeptide and nitric oxide synthase was seen in only a small population of myenteric neurones.  相似文献   

12.
Serotonin (5-hydroxytryptamine, 5-HT) occurs in a wide range of tissues throughout the body of the rainbow trout. Results reported here indicate that the main peripheral sources of serotonin are the intestinal tract and the gill epithelium (levels above 1500 ng/g). The high intestinal serotonin concentration is mostly due to serotoninergic nerve fibres, which are present at high density in the intestinal wall. Only about 2% of serotonin is associated with mucosal enterochromaffin cells. In the remaining tissues studied serotonin concentration was below 160 ng/g: the highest concentrations were seen in the anterior and posterior kidneys, followed by the liver, heart, and spleen. 5-Hydroxyindolacetic acid (5-HIAA) levels, except in plasma, were generally lower than serotonin levels, and were below our detection limits in heart, spleen and posterior kidney. Acute d-fenfluramine treatment (5 or 15 mg/kg i.p.) significantly increased 5-HIAA/5-HT ratio in the anterior intestine, pyloric caeca and plasma. Serotonin released from intestinal serotoninergic fibres in response to d-fenfluramine treatment is metabolized locally, and only a small part reaches the blood, from where it can be taken up and metabolized by other peripheral tissues, such as the liver and gill epithelium. The non-metabolized serotonin pool in the blood appears to be located extracellularly, not intracellularly as in mammals. In view of these findings, we present an overview of peripheral serotonin dynamics in rainbow trout.  相似文献   

13.
O Nada  K Hirata 《Histochemistry》1975,43(3):237-240
The fluorescence histochemical examination on biogenic amines of the rabbit's foliate papilla revealed that a specific monoamine exhibiting an yellow fluorescence was present in a certain cell type of taste buds. The fluorescence had the emission maximum at 520 mmu and faded rapidly under the influence of the UV-irradiation. The green fluorescence of adrenergic nerve had the emission maximum at 480 mmu and was fairly stable upon the UV-irradiation. The yellow fluorescence disappeared completely following reserpine treatment, while it was markedly enhanced by nialamide treatment. From the observations, it is suggested that certain taste bud cells of the foliate papilla contain a biogenic monoamine, probably 5-hydroxytryptamine (serotonin).  相似文献   

14.
Summary The sites of uptake, decarboxylation and retention of 1-dopa and the uptake and retention of dopamine and 6-hydroxytryptamine in the small intestine of the guinea-pig have been localised histochemically with a fluorescence technique for arylethylamines. In segments of ileum from untreated guinea-pigs only noradrenergic axons are fluorescent; these axons were eliminated by surgical denervation (crushing nerves running to the intestine through the mesentery) or by chemical denervation with 6-hydroxydopamine. In denervated segments of ileum, cell bodies and processes of intrinsic neurons become fluorescent after the injection of 1-dopa, dopamine or 6-hydroxytryptamine and the inhibition of monoamine oxidase, as do cells of Brunner's glands and Paneth cells. About 11% of the nerve cell bodies in the submucous plexus and 0.4% of those in the myenteric plexus become fluorescent. Varicose intrinsic axons which take up amines are found amongst the nerve cell bodies of the myenteric and submucous plexuses. They also ramify in the principal connections of the plexuses, in the tertiary strands of the myenteric plexus, in the deep muscular plexus and contribute sparse supplies of axons to arterioles in the submucosa and to the lamina propria of the mucosa. The axons are resistant to the degenerative actions of 6-hydroxydopamine.It is suggested that the intrinsic amine handling axons are more likely to utilise an indolamine related to 5-hydroxytryptamine than they are to utilise a catecholamine as a neurotransmitter.  相似文献   

15.
Summary Somatostatin-immunoreactive nerves and endocrine cells were localized by use of immunohistochemistry in human stomach, small and large intestine. The nature of the immunoreactivity in acid extracts of separated layers of intestine was determined with separation by high pressure liquid chromatography followed by detection with radioimmunoassay; authentic somatostatin-14 was found in the external musculature, which contains nerves, and in the submucosa and mucosa, which contain both nerve fibres and endocrine cells.The distribution of somatostatin nerves in the gastric antrum, duodenum, jejunum, ileum, ascending and sigmoid colon, and rectum is described. In the intestine many positive perikarya and fine varicose fibres were seen. Mucosal fibres formed a sub-epithelial plexus and a looser network in the lamina propria; this nerve supply was less dense in the large intestine. Submucous ganglia contained positive perikarya and terminals; many terminals formed pericellular baskets, mainly around non-reactive cells. A small number of nerve fibres were associated with submucosal blood vessels. The innervation of the circular and longitudinal muscle was sparse. Positive nerve terminals were seen in the myenteric plexus, although fewer than in the submucous ganglia; positive perikarya were scarce in myenteric ganglia. Somatostatin-immunoreactive nerves were found in the muscle layers and myenteric plexus of the gastric antrum, but were not detected in the antral mucosa and all layers of the gastric body.The distribution of human enteric somatostatin nerves is compared to that in small laboratory animals, and possible roles for these nerves are discussed.  相似文献   

16.
The aim of this study was to investigate the arrangement and chemical coding of enteric nerve structures in the human large intestine affected by cancer. Tissue samples comprising all layers of the intestinal wall were collected during surgery form both morphologically unchanged and pathologically altered segments of the intestine (n=15), and fixed by immersion in buffered paraformaldehyde solution. The cryostat sections were processed for double-labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene-product 9.5) and their chemical coding using antibodies against somatostatin (SOM), substance P (SP) and calcitonin gene-related peptide (CGRP). The microscopic observations revealed distinct morphological differences in the enteric nerve system structure between the region adjacent to the cancer invaded area and the intact part of the intestine. In general, infiltration of the cancer tissue resulted in the gradual (depending on the grade of invasion) first decomposition and reduction to final partial or complete destruction and absence of the neuronal elements. A comparative analysis of immunohistochemically labeled sections (from the unchanged and pathologically altered areas) revealed a statistically significant decrease in the number of CGRP-positive neurons and nerve fibres in both submucous and myenteric plexuses in the transitional zone between morphologically unchanged and cancer-invaded areas. In this zone, a decrease was also observed in the density of SP-positive nerve fibres in all intramural plexuses. Conversely, the investigations demonstrated statistically insignificant differences in number of SP- and SOM-positive neurons and a similar density of SOM-positive nerve fibres in the plexuses of the intact and pathologically changed areas. The differentiation between the potential adaptive changes in ENS or destruction of its elements by cancer invasion should be a subject of further investigations.  相似文献   

17.
VIP-like immunoreactivity was found in nerve fibres in all layers of the gut wall in both stomach and intestine, and was abundant in the myenteric and submucous plexuses. A few fibres were associated with blood vessels. Nerve cells showing VIP-like immunoreactivity were found in the myenteric plexus. Neurotensin-like immunoreactivity was found in nerve cells and numerous nerve fibres in the myenteric plexus of both stomach and intestine and in nerve fibres of the circular muscle layer, while bombesin-like immunoreactivity was confined to a low number of nerve fibres in the myenteric plexus of the stomach. The results indicate that a VIP-like, a neurotensin-like and a bombesin-like peptide are present in neurons of the gut of Lepisosteus.  相似文献   

18.
Long-term (10 days) administration of imipramine [20 mg/(kg X d)] to rabbits significantly increases the Km value (4.0 micron) of 5-hydroxytryptamine uptake in their platelets compared to those of saline- (0.7 micron) or haloperidol- (0.4 micron) treated rabbits. Administration of haloperidol inhibits the 5-hydroxytryptamine uptake non-competitively, and in vitro it had an ID50 value of 22 micron. Intravenous injections of [14C]5-hydroxytryptamine were given to the animals 1 h before blood collection. After isolation of platelets, their sonicates were subjected to 30-60% continuous sucrose gradient centrifugation. The subcellular distribution of [14C]5-hydroxytryptamine indicates that imipramine treatment, in contrast to the control and haloperidol treatment, led to a shift in the exogenous 5-hydroxytryptamine peak from within the granular zone (d 1.18) to the extragranular cytoplasm (d 1.15). Compared to control values, the imipramine treatment caused 63% inhibition in the platelet Na-K-ATPase activity.  相似文献   

19.
Summary The distribution patterns of peptide-containing neurons and endocrine cells were mapped in sections of oesophagus, stomach, small intestine and large intestine of the rabbit, by use of standard immunohistochemical techniques. Whole mounts of separated layers of ileum were similarly examined. Antibodies raised against vasoactive intestinal peptide (VIP), substance P (SP), somatostatin (SOM), neuropeptide Y (NPY), enkephalins (ENK) and gastrin-releasing peptide (GRP) were used, and for each of these antisera distinct populations of immunoreactive (IR) nerve fibres were observed. Endocrine cells were labelled by the SP, SOM or NPY antisera in some regions.VIP-IR nerve fibres were common in each layer throughout the gastrointestinal tract. With the exception of the oesophagus, GRP-IR nerve fibres also occurred in each layer of the gastrointestinal tract; they formed a particularly rich network in the mucosa of the stomach and small intestine. Fewer nerve fibres containing NPY-IR or SOM-IR were seen in all areas. SOM-IR nerve fibres were very scarce in the circular and longitudinal muscle layers of each area and were absent from the gastric mucosa. The SP-IR innervation of the external musculature and ganglionated plexuses in most regions was rather extensive, whereas the mucosa was only very sparsely innervated. ENK-IR nerve fibres were extremely rare or absent from the mucosa of all areas, although immunoreactive nerve fibres were found in other layers.These studies illustrate the differences in distribution patterns of peptide-containing nerve fibres and endocrine cells along the gastrointestinal tract of the rabbit and also show that there are some marked differences in these patterns, in comparison with other mammalian species.  相似文献   

20.
1. The distribution of choline acetyltransferase (ChAT) in rat and guinea-pig intestine has been analysed using an indirect immunofluorescence technique.2. ChAT immunoreactivity was apparent in nerve fibres and cell bodies of the myenteric and submucous plexus and in fibres throughout the muscle coats and the mucosa.3. Staining was also evident in a sub-population of mucosal endocrine cells in the small intestine, implying the existence of this enzyme and its product (acetylcholine) in these cells.4. These data are consistent with previous observations on the distribution of ChAT activity in mammalian intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号