首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Viral and Bacterioplankton Dynamics in Two Lakes with Different Humic Contents   总被引:10,自引:0,他引:10  
Viral and bacterioplankton dynamics were investigated, together with the temporal variation of phage-infected bacterioplankton in two oligotrophic lakes, one humic and the other clearwater. Bacterial abundance was significantly higher in the humic lake, while the abundance of virus-like particles (VLP) was significantly higher in the clearwater lake. There were no differences in either the frequency of infected bacterial cells (FIC), or in burst size between the lakes. Because of the higher bacterial abundance in the humic lake, a larger number of bacteria were lyzed in this lake. FIC showed large seasonal changes, varying between 9 and 43%, which covers almost the entire range of previously published data from both lacustrine and marine environments. The temporal changes in VLP abundance and FIC were slow in both the humic and clearwater lakes. The burst size was low in both lakes (average value, nine in each case), probably because of the oligotrophic status of the lakes. The chlorophyll a concentrations were higher and positively correlated with VLP numbers in the clearwater lake, indicating that a significant proportion of the viruses in this lake may be phytoplankton viruses.  相似文献   

2.
Cyanophages are important components of aquatic ecosystems, but their genetic diversity has been little investigated in freshwaters. A yearlong survey was conducted in surface waters of the two largest natural perialpine lakes in France (Lake Annecy and Lake Bourget) to investigate part of this cyanophage diversity through the analysis of both structural (e.g., g20) and functional (e.g., psbA) genes. We found that these cyanophage signature genes were prevalent throughout the year but that the community compositions of g20 cyanomyoviruses were significantly different between the two lakes. In contrast, psbA-containing cyanophages seemed to be more similar between the two ecosystems. We also found that a large proportion of g20 sequences grouped with cyanomyophage isolates. psbA sequences, belonging to phages of Synechococcus spp., were characterized by distinct triplet motifs (with a novel viral triplet motif, EFE). Thus, our results show that cyanophages (i) are a diverse viral community in alpine lakes and (ii) are clearly distinct from some other freshwater and marine environments, suggesting the influence of unique biogeographic factors.  相似文献   

3.
4.
Seasonal Dynamics of Periphyton in a Large Tropical Lake   总被引:1,自引:0,他引:1  
Tropical aquatic systems are generally assumed to have little seasonality in productivity patterns. However, this study indicated that there was substantial seasonal variation in epilithic productivity and biomass in tropical Lake Tanganyika, due primarily to seasonal patterns in lake hydrodynamics that influence nutrient availability. Although they support much of the lake’s biological diversity, epilithic algae made a minor contribution to the total energy budget in Lake Tanganyika. A comparison among large, oligotrophic lakes revealed no significant latitudinal trends in periphyton productivity or biomass. However, Lake Tanganyika has relatively low benthic algal biomass and is therefore more efficient at photosynthesis than the temperate lakes. The influence of wave action and consumer density and diversity may be important in moderating productivity of the epilithic community.  相似文献   

5.
The phylogenetic diversity and seasonal dynamics of freshwater Actinobacteria populations in four limnologically different lakes of the Mecklenburg-Brandenburg Lake District (northeastern Germany) were investigated. Fluorescence in situ hybridization was used to determine the seasonal abundances and dynamics of total Actinobacteria (probe HGC69a) and the three actinobacterial subclusters acI, acI-A, and acI-B (probes AcI-852, AcI-840-1, and AcI-840-2). Seasonal means of total Actinobacteria abundances in the epilimnia of the lakes varied from 13 to 36%, with maximum values of 30 to 58%, of all DAPI (4′,6′-diamidino-2-phenylindole)-stained cells. Around 80% of total Actinobacteria belonged to the acI cluster. The two subclusters acI-A and acI-B accounted for 60 to 91% of the acI cluster and showed seasonal means of 49% (acI-B) and 23% (acI-A) in relation to the acI cluster. Total Actinobacteria and members of the clusters acI and acI-B showed distinct seasonal changes in their absolute abundances, with maxima in late spring and fall/winter. In eight clone libraries constructed from the lakes, a total of 76 actinobacterial 16S rRNA gene sequences were identified from a total of 177 clones. The majority of the Actinobacteria sequences belonged to the acI and acIV cluster. Several new clusters and subclusters were found (acSTL, scB1-4, and acIVA-D). The majority of all obtained 16S rRNA gene sequences are distinct from those of already-cultured freshwater Actinobacteria.  相似文献   

6.

Background

High genetic diversity at both inter- and intra-host level are hallmarks of RNA viruses due to the error-prone nature of their genome replication. Several groups have evaluated the extent of viral variability using different RNA virus deep sequencing methods. Although much of this effort has been dedicated to pathogens that cause chronic infections in humans, few studies investigated arthropod-borne, acute viral infections.

Methods and Principal Findings

We deep sequenced the complete genome of ten DENV2 isolates from representative classical and severe cases sampled in a large outbreak in Brazil using two different approaches. Analysis of the consensus genomes confirmed the larger extent of the 2010 epidemic in comparison to a previous epidemic caused by the same viruses in another city two years before (genetic distance = 0.002 and 0.0008 respectively). Analysis of viral populations within the host revealed a high level of conservation. After excluding homopolymer regions of 454/Roche generated sequences, we found 10 to 44 variable sites per genome population at a frequency of >1%, resulting in very low intra-host genetic diversity. While up to 60% of all variable sites at intra-host level were non-synonymous changes, only 10% of inter-host variability resulted from non-synonymous mutations, indicative of purifying selection at the population level.

Conclusions and Significance

Despite the error-prone nature of RNA-dependent RNA-polymerase, dengue viruses maintain low levels of intra-host variability.  相似文献   

7.
The seasonal abundance and composition of photosynthetic picoplankton (0.2-2 μm) was compared among five oligotrophic to mesotrophic lakes in Ontario. Epilimnetic picocyanobacteria abundance followed a similar pattern in all lakes; maximum abundance (2-4 × 105 cells · ml−1) occurred in late summer following a period of rapid, often exponential increase after epilimnetic temperatures reached 20 °C. In half of the lakes picocyanobacteria abundance was significantly correlated with temperature, while in other lakes the presence of a small spring peak resulted in a poor correlation with temperature. In all lakes there was a significant correlation between epilimnetic abundance and day of the year. Correlations with water chemistry parameters (soluble reactive phosphorus, total phosphorus, particulate C: P and C: N) were generally weaker or insignificant. However, in the three lakes with the highest spring nitrate concentrations, a significant negative correlation with nitrate was observed. During summer stratification, picocyanobacteria abundance reached a maximum within the metalimnion and at or above the euphotic zone (1% of incident light) in all lakes. These peaks were not related to nutrient gradients. The average total phytoplankton biomass ranged from 0.5 g m−3 (wet weight) in the most oligotrophic lake to 1.4 g m−3 for the most mesotrophic with picoplankton biomass ranging from 0.01 g m−3 to 0.3 g m−3. Picocyanobacteria biomass comprised 1 to 9 % of total phytoplankton biomass in late summer, but in one year for one lake represented a maximum of 56%. Other photosynthetic picoplankton (unidentified eukaryotes, Chlorella spp. Nannochloris spp.), although less abundant (103 cells · ml−1) than picocyanobacteria, represented biomass equal or greater than that of the picocyanobacteria in spring and early summer. On average, half of the photosynthetic picoplankton biomass was eukaryotic in the more coloured lakes, while in the clear lakes less than 20% was eukaryotic. Among the lakes there was a significant positive correlation between the average light extinction coefficient and the proportion of eukaryotic biomass of the picoplankton. In mesotrophic Jack's Lake, the contribution of picoplankton to the maximum photosynthetic rate ranged from 10 to 47% with the highest values in the spring (47%) and late summer (33%), as a result of eukaryotic picoplankton and picocyanobacteria respectively. Picocyanobacteria cell specific growth rates were high during July (0.6-0.8 day−1) and losses were close to 80% of the growth rate. Thus, despite low biomass, photosynthetic picoplankton populations appeared to turn over rapidly and potentially contributed significantly to planktonic food webs in early spring and late summer.  相似文献   

8.
9.
In lentic systems, hydrology can be dramatically altered after storm events, potentially modifying the carbon budget. In particular, rapid increases in the surface water carbon dioxide partial pressure (pCO2) have been observed following such events. Several processes may explain these shifts in lake CO2 dynamics, including vertical mixing, increases in metabolism, and increases in external loading. To evaluate the relative importance of these various processes, we reconstructed the whole-lake daily CO2 budget using concurrent estimates of lake metabolism and daily CO2 mass balance budgets in two lakes with distinct morphometries located in Québec, Canada. We found that storm events caused variable, but significant, changes in whole-lake CO2 mass. Such events influenced CO2 dynamics indirectly by inducing shifts in lake metabolism, and directly by importing CO2 by the inflowing storm waters. Storm intensity (in terms of total amount of precipitation) influences the balance between these two processes, but the final outcome depends on lake morphometry. Our results suggest that when storms are intense enough to drive lake water renewal rate beyond 1% day?1, external CO2 loadings became the dominant process, overwhelming internal CO2 production. Lakes with slower hydrological turnover, however, are more susceptible to internal regulation and may simply re-allocate CO2 from the hypolimnion to the epilimnion following a storm event. Our results thus suggest that this tightening of the watershed-lake-atmosphere linkage by climatic events is strongly modulated by lake morphometry. These features should be considered when predicting the impact of future climate change on regional C budgets and emissions.  相似文献   

10.
In many animals, body size plays an important role in determining both ecological success and mating success. Thus, the expression of body size within a population is often the result of the interaction between natural selection and sexual selection. Here, I examine the mechanistic basis for a large male mating advantage in two freshwater amphipod species that differ ecologically. Traditionally, size‐biased mating patterns in amphipods have been attributed to the advantage of large size in male–male competition for females. In this study, when direct male–male interactions were eliminated (via tethering), large males had a mating advantage similar to that observed under control conditions (males free to interact) and in previous field and laboratory studies. These results suggest that male–female interactions play an important role in selecting for large male size. There was, however, some evidence for male takeovers in the species that shows the stronger size‐based mating bias. Takeovers occurred in 33% of trials when smaller males were in the position of defender, i.e. paired with the female. Therefore, takeovers by larger males may also contribute to the strong size‐based mating biases observed in this species.  相似文献   

11.
The quantitative importance and composition of protozoan communities was investigated in sandy and silty intertidal sediments of a polyhaline and a freshwater site in the Schelde estuary. Total biomass of the protozoans studied, integrated over the upper 4 cm of the sediment, ranged from 41 to 597 mg C m–2 and was in the same order of magnitude at the polyhaline and the freshwater intertidal site. Nanoheterotrophs were the dominant protozoans, in terms of both abundance and biomass. Ciliate abundances appeared to be largely determined by physical constraints, namely, the amount of interstitial space and hydrodynamic disturbances. It remains unclear which factors control nanoheterotrophic abundances and biomasses, which showed comparatively little seasonal and between-site fluctuations. Salinity differences were clearly reflected in the protozoan community composition. The dominant role of sessile ciliates is a unique feature of sediments in the freshwater tidal reaches, which can be attributed to the dynamic nature of sedimentation and resuspension processes associated with the maximum turbidity zone. Based on biomass ratios and estimated weight-specific metabolic rates, protozoa possibly accounted for ~29 to 96% of the estimated combined metabolic rate of protozoan and metazoan consumers at our sampling stations in late spring/early autumn. The contribution of protozoa to this combined metabolic rate was higher at the sandy than at the silty stations and was mainly accounted for by the nanoheterotrophs. These data emphasize the potential importance of small protozoa in sediments and suggest that protozoa are important components of benthic food webs.  相似文献   

12.
We used data collected from 1989 to 2009 from 151 shallow (mean depth < 3 m) temperate lakes in Denmark to explore the influence of lake trophic status, surface area and catchment size on the seasonal dynamics of the air–water flux of CO2. Monthly CO2 fluxes were derived from measurements of acid neutralizing capacity (ANC), pH, ionic strength, temperature, and wind speed. CO2 fluxes exhibited large seasonal variability, in particular in oligo-mesotrophic lakes. Most of the lakes emitted CO2 during winter (median rates ranging 300–1,900 mg C m−2 day−1), and less CO2 during summer or, in the case of some of the highly eutrophic lakes, retained CO2 during summer. We found that seasonal CO2 fluxes were strongly negatively correlated with pH (r = −0.65, P < 0.01), which in turn was correlated with chlorophyll a concentrations (r = 0.48, P < 0.01). Our analysis suggests that lake trophic status (a proxy for pelagic production) interacts with the lake ANC to drive the seasonal dynamics of CO2 fluxes, largely by changing pH and thereby the equilibrium of the free CO2 and bicarbonate relation. Long-term observations from four lakes, which have all undergone a period of oligotrophication during the past two decades, provide further evidence that CO2 efflux generally increases as trophic status decreases, as a consequence of decreased pH. Across these four lakes, the annual average CO2 emission has increased by 32% during the past two decades, thus, demonstrating the strong link between lake trophic status and CO2 flux.  相似文献   

13.
罗氏沼虾体内两种病毒颗粒的分离、纯化与核酸特性   总被引:3,自引:1,他引:3  
从患肌肉白浊症状的罗氏沼虾幼苗体内分离纯化得到两种大小不同的病毒颗粒.这两种病毒颗粒均为对称的20面体结构,表面光滑,无囊膜,对氯仿不敏感.一种是直径为26nm~27nm的颗粒,在氯化铯中的密度为132g/cm3,病毒基因组含两段单链的RNA,分别为30kb和12kb,具有诺达病毒科成员的特征.一种是直径为14nm~16nm的颗粒,在氯化铯中的密度为133g/cm3,含有一段大小为09kb的单链RNA,拟为卫星病毒样颗粒或辅助病毒.  相似文献   

14.
The paper deals with the spatial and the temporal variability of the population dynamics of five key molluscan species at two rocky intertidal shores on the southern Saurashtra coastline of India. The intertidal belts of the two selected stations, Veraval and Diu, are about 100 km apart and differ in their coast characteristics and level of human interference. The slope and the substrate types of the two stations are not uniform and the exposure of intertidal belt of these predominantly rocky shores during low tides is also not significantly long. The study revealed that a general, species specific pattern of spatial and temporal variations existed in the population abundance and density of the species studied. There was considerable spatial variability in some species examined but most species showed no clear seasonal trends for the population abundance. The Veraval coast, in spite of being affected by heavy human interference, is still a favourable place for Chiton, Turbo cornatus and Turbo intercoastalis than Diu, though the latter is relatively less affected by anthropogenic influences. It appears that the subtratum type, short exposure duration and moderate wave action of the Arabian Sea are most active controlling factors for higher distribution of these species at Veraval.  相似文献   

15.
In aquatic ecosystems, fluctuations in environmental conditions and prokaryotic host physiological states can strongly affect the dynamics of viral life strategies. The influence of prokaryote physiology and environmental factors on viral replication cycles (lytic and lysogeny) was investigated from April to September 2011 at three different strata (epi, meta, and hypolimnion) in the mixolimnion of deep volcanic temperate freshwater Lake Pavin (France). Overall, the euphotic region (epi and metalimnion) was more dynamic and showed significant variation in microbial standing stocks, prokaryotic physiological state, and viral life strategies compared to the aphotic hypolimnion which was stable within sampled months. The prokaryotic host physiology as inferred from the nucleic acid content of prokaryotic cells (high or low nucleic acid) was strongly regulated by the chlorophyll concentration. The predominance of the high nucleic acid (HNA) prokaryotes (cells) over low nucleic acid (LNA) prokaryotes (cells) in the spring (HNA/LNA?=?1.2) and vice versa in the summer period (HNA/LNA?=?0.4) suggest that the natural prokaryotic communities underwent major shifts in their physiological states during investigated time period. The increase in the percentage of inducible lysogenic prokaryotes in the summer period was associated with the switch in the dominance of LNA over HNA cells, which coincided with the periods of strong resource (nutrient) limitation. This supports the idea that lysogeny represents a maintenance strategy for viruses in unproductive or harsh nutrient/host conditions. A negative correlation of percentage of lysogenic prokaryotes with HNA cell abundance and chlorophyll suggest that lysogenic cycle is closely related to prokaryotic cells which are stressed or starved due to unavailability of resources for its growth and activity. Our results provide support to previous findings that changes in prokaryote physiology are critical for the promotion and establishment of lysogeny in aquatic ecosystems, which are prone to constant environmental fluctuations.  相似文献   

16.
The vertical distribution of thermotolerant (37°C and 45°C) free-living amoebae (FLA) in warm monomictic lakes was determined in relation to the onset of thermal stratification and associated physical and chemical changes. The position of abiotic or biotic paniculate layers in the water column was located by using a submersible horizontal beam transmissometer that measures attenuance, or the absorption and scattering of light by participates in the water column. During mixis, the vertical distribution of amoebae was sporadic with significant numbers of FLA only occurring in clay layers caused by runoff after heavy rains. With the onset of thermal stratification in the lakes, phytoplankton layers began to form. Few amoebae were isolated from layers containing flagellated phytoplankton; however, significant (P < 0.005) numbers of FLA were isolated from two paniculate layers dominated by the filamentous blue-green algae Aphanizomenon and Lyngbya, respectively. By late June, a persistent detrital or decomposition layer formed in the lower metalimnion, as well as a hypolimnetic iron layer where the Fe2+ state was predominant. In this midsummer period, 13 Naegieria fowleri were isolated, with three from the detrital layer and seven from the iron layer. The presence of attenuation zones was found to be the best indicator of the vertical distribution of FLA in the water column, and such layers represent an important, previously undescribed habitat for potentially pathogenic FLA.  相似文献   

17.
Seasonal microbial activity in Antarctic freshwater lake sediments   总被引:2,自引:1,他引:2  
Summary Seasonal fluctuations in population numbers and activity were monitored in bottom sediments of oligotrophic Moss Lake, mesotrophic Heywood Lake and eutrophic Amos Lake on Signy Island, South Orkney Islands, during 1976–78. Heywood and Amos Lakes became anoxic under winter ice cover (8–10 months) and significant populations of facultatively anaerobic heterotrophs and sulphate-reducing bacteria developed. In contrast, Moss Lake surface sediments never became anoxic and anaerobic bacteria were virtually absent. Direct microscopic counts and viable plate counts fluctuated relatively little in Moss Lake throughout the study period, whereas distinct seasonality was observed in the more enriched lake systems. Similarly, measurements of oxygen consumption and dark 14CO2 uptake by mud cores indicated no obvious seasonal fluctuations in Moss Lake data, in contrast to the marked seasonal pattern observed in data from the other lakes. In these latter systems, oxygen uptake rates were highest in summer (c. 400 mg O2 m-2 d-1) and virtually undetectable in winter. Comparison of oxygen uptake with oxygen concentration and temperature revealed differences, between lakes, in uptake response to oxygen concentration, whereas uptake response to temperature did not differ significantly between lakes. Chemosynthetic production in the Signy Island lake sediments was in the range 1.6–35.3 g C m-2 (mud surface) d-1 with highest values recorded in Amos Lake under winter ice cover and anoxic conditions. The findings from this and earlier studies of the three lakes have been assembled to indicate the relative importance of green plants and bacteria to the carbon cycle in these permanently cold systems.  相似文献   

18.
Hovenden  Mark J. 《Annals of botany》2000,86(4):717-721
The thallus nitrogen (N) concentration of two dominant macrolichensof continental Antarctica (Usnea sphacelata and Umbilicariadecussata) was estimated each month for 1 year on a low roundedknoll on Clark Peninsula, Windmill Islands, Wilkes Land, Antarctica.Thallus N was significantly higher in Umbilicaria decussatathan in Usnea sphacelata and varied according to site. Duringthe winter months, when the lichens were metabolically inactive,thalli gradually accumulated N. At the onset of warmer conditions,thallus N content fell dramatically in both species, with thetiming of the decline being related to microclimatic conditions.The strongly seasonal pattern of metabolic activity in thesespecies is reflected in their nitrogen relations. Copyright2000 Annals of Botany Company Lichen, nitrogen, Antarctica, season, Usnea sphacelata, Umbilicaria decussata  相似文献   

19.
Seasonal and vertical distribution, migratory patterns and reproductive effort in coexisting cladocerans were investigated in three humic lakes with different, but low phytoplankton abundances and varying fish predation pressure. Seasonal and vertical habitat or niche overlap varied, but were high within most pairs of species in all localities. Migration was conspicuous in presence of planktivorous fish, less so in the fish free lake. Despite algal densities below incipient limiting level (30–200 μg C I−1) and a low ratio (3–10) of algal to cladoceran biomass, zooplankton distribution and reproductive parameters were not clearly related to algal biomass. Bacterial biomass equalled 10–50% of phytoplankton biomass, while detritus by far was the largest of the particulate compartements. It was concluded that with a possible exception of the early summer algal bloom, additional carbon sources (bacteria, detritus) are important to cladoceran nutrition in these humic lakes. A large share of N- and P-poor detritus in the diet would give zooplankton productivity limitation by food quality in terms of elemental composition rather than food quantity. This would permit coexistence even of species with rather high food overlap, but give low production rates for all species in agreement with the observations.  相似文献   

20.
The Signy Island terrestrial reference sites epitomize unpolluted maritime Antarctic tundra. The extreme transition from the harsh Antarctic winter to the milder summer facilitates studies of the effects of freeze-thaw cycles on microbial activity in moss peat. Seasonal monitoring of peat oxygen uptake showed a transient spring peak at c. 0oC, attributed to microbial utilization of dissolved organic carbon (DOC). After a more gradual temperature-linked summer increase, autumnal freeze-thaw cycles stimulated a final pre-winter peak. The transient climaxes were associated with blooms of saccharolytic yeasts and microfungi. The bacterial population stabilized after a spring increase but then diversified as DOC became rate-limiting. Effects of pre-monitored spring freeze-thaw cycles on late-winter peat cores were simulated in a Gilson respirometer. In vitro perturbations demonstrated the regulatory effects of DOC availability, water content and temperature on peat respiration and microflora! composition. Comparative respirometry and loss in tensile strength of interred cotton strips showed a difference in decomposer activity beneath a relatively dry Polytrichum-Chorisodontium turf and a wet Cattiergon-Cephalozielta carpet. This was associated with water content and anaerobiosis. Cellulolysis accelerated during the growing season and increased with depth, despite anaerobic conditions. Estimates of annual bryophyte decomposition are presented for use in an Antarctic ecosystem model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号