首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidized LDL is present within atherosclerotic lesions, demonstrating a failure of antioxidant protection. A normal human serum ultrafiltrate of Mr below 500 was prepared as a model for the low Mr components of interstitial fluid, and its effects on LDL oxidation were investigated. The ultrafiltrate (0.3%, v/v) was a potent antioxidant for native LDL, but was a strong prooxidant for mildly oxidized LDL when copper, but not a water-soluble azo initiator, was used to oxidize LDL. Adding a lipid hydroperoxide to native LDL induced the antioxidant to prooxidant switch of the ultrafiltrate. Uric acid was identified, using uricase and add-back experiments, as both the major antioxidant and prooxidant within the ultrafiltrate for LDL. The ultrafiltrate or uric acid rapidly reduced Cu2+ to Cu+. The reduction of Cu2+ to Cu+ may help to explain both the antioxidant and prooxidant effects observed. The decreased concentration of Cu2+ would inhibit tocopherol-mediated peroxidation in native LDL, and the generation of Cu+ would promote the rapid breakdown of lipid hydroperoxides in mildly oxidized LDL into lipid radicals. The net effect of the low Mr serum components would therefore depend on the preexisting levels of lipid hydroperoxides in LDL. These findings may help to explain why LDL oxidation occurs in atherosclerotic lesions in the presence of compounds that are usually considered to be antioxidants.  相似文献   

2.
Oxidative modification of LDL by vascular cells has been proposed as the mechanism by which LDL become atherogenic. The effect of ibuprofen on LDL modification by copper ions, monocytes and endothelial cells was studied by measuring lipid peroxidation products. Ibuprofen inhibited LDL oxidation in a dose-dependent manner over a concentration range of 0.1 to 2.0 mM. Ibuprofen (2 mM, 100 microg/ml LDL) reduced the amount of lipid peroxides formed during 2 and 6 h incubation in the presence of copper ions by 52 and 28%, respectively. Weak free radical scavenging activity of ibuprofen was observed in the DPPH test. The protective effect of ibuprofen was more marked when oxidation was induced by monocytes or endothelial cells. Ibuprofen (1 mM, 100 microg/ml LDL) reduced the amount of lipid peroxides generated in LDL during monocyte-mediated oxidation by 40%. HUVEC-mediated oxidation of LDL in the absence and presence of Cu2+ was reduced by 32 and 39%, respectively. More lipid peroxides appeared when endothelial cells were stimulated by IL-1beta or TNFalpha and the inhibitory effect of ibuprofen in this case was more pronounced. Ibuprofen (1 mM, 100 microg/ml LDL) reduced the amount of lipid peroxides formed during incubation of LDL with IL-1beta-stimulated HUVEC by 43%. The figures in the absence and presence of Cu2+ for HUVEC stimulated with TNFalpha were 56 and 59%, respectively. To assess the possibility that ibuprofen acts by lowering the production rate of reactive oxygen species, the intracellular concentration of H2O2 was measured. Ibuprofen (1 mM) reduced intracellular production of hydrogen peroxide in PMA-stimulated mononuclear cells by 69%. When HUVEC were stimulated by IL-1beta or TNFalpha the reduction was 62% and 66%, respectively.  相似文献   

3.
Oxidised low density lipoprotein (LDL) may be involved in the pathogenesis of atherosclerosis. We have therefore investigated the mechanisms underlying the antioxidant/pro-oxidant behavior of dehydroascorbate, the oxidation product of ascorbic acid, toward LDL incubated with Cu(2+) ions. By monitoring lipid peroxidation through the formation of conjugated dienes and lipid hydroperoxides, we show that the pro-oxidant activity of dehydroascorbate is critically dependent on the presence of lipid hydroperoxides, which accumulate during the early stages of oxidation. Using electron paramagnetic resonance spectroscopy, we show that dehydroascorbate amplifies the generation of alkoxyl radicals during the interaction of copper ions with the model alkyl hydroperoxide, tert-butylhydroperoxide. Under continuous-flow conditions, a prominent doublet signal was detected, which we attribute to both the erythroascorbate and ascorbate free radicals. On this basis, we propose that the pro-oxidant activity of dehydroascorbate toward LDL is due to its known spontaneous interconversion to erythroascorbate and ascorbate, which reduce Cu(2+) to Cu(+) and thereby promote the decomposition of lipid hydroperoxides. Various mechanisms, including copper chelation and Cu(+) oxidation, are suggested to underlie the antioxidant behavior of dehydroascorbate in LDL that is essentially free of lipid hydroperoxides.  相似文献   

4.
Effect of aqueous extract of garlic on hepatic injury due to lead-induced oxidative stress in experimental rats has been investigated. Lead acetate (LA) at a dose of 15 mg/kg body wt was administered ip to rats for 7 consecutive days to induce hepatic injury. Freshly prepared aqueous garlic extract (AGE) at a dose of 50 mg/kg body wt was fed orally to rats 1 h before LA treatment for similar period. LA treatment caused hepatic injury as evident from increased activities of serum glutamate pyruvate transaminase (SGPT) and alkaline phosphatase (ALP), increased serum bilirubin level and damage in the tissue morphology. Lead-induced oxidative stress in liver was evident from increased levels of lipid peroxidation and reduced glutathione. The decreased activity of superoxide dismutase (SOD) and an increased activity of catalase as well as an increased activity of xanthine oxidase (XO) indicate generation and possible accumulation of reactive oxygen intermediates. Furthermore, altered activities of lactate dehydrogenase (LDH), isocitrate dehydrogenase (ICDH), alpha-keto glutarate dehydrogenase (alpha-KGDH) and succinate dehydrogenase (SDH) also indicate an impaired substrate utilization and generation of oxidative stress. All these changes were found to be mitigated when the rats were pre-treated with the AGE. Results indicate that AGE has the potential to ameliorate lead-induced hepatic injury due to oxidative stress in rats. The protective effects may be due to the antioxidant properties of AGE and may have future therapeutic relevance.  相似文献   

5.
We reported earlier that urate may behave as a pro-oxidant in Cu2+-induced oxidation of diluted plasma. Thus, its effect on Cu2+-induced oxidation of isolated low-density lipoprotein (LDL) was investigated by monitoring the formation of malondialdehyde and conjugated dienes and the consumption of urate and carotenoids. We show that urate is antioxidant at high concentration but pro-oxidant at low concentration. Depending on Cu2+ concentration, the switch between the pro- and antioxidant behavior of urate occurs at different urate concentrations. At high Cu2+ concentration, in the presence of urate, superoxide dismutase and ferricytochrome c protect LDL from oxidation but no protection is observed at low Cu2+ concentration. The use of Cu2+ or Cu+ chelators demonstrates that both copper redox states are required. We suggest that two mechanisms occur depending on the Cu2+ concentration. Urate may reduce Cu2+ to Cu+, which in turn contributes to formation. The Cu2+ reduction is likely to produce the urate radical (UH.-). It is proposed that at high Cu2+ concentration, the reaction of UH.- radical with generates products or intermediates, which trigger LDL oxidation. At low Cu2+ concentration, we suggest that the Cu+ ions formed reduce lipid hydroperoxides to alkoxyl radicals, thereby facilitating the peroxidizing chain reaction. It is anticipated that these two mechanisms are the consequence of complex LDL-urate-Cu2+ interactions. It is also shown that urate is pro-oxidant towards slightly preoxidized LDL, whatever its concentration. We reiterate the conclusion that the use of antioxidants may be a two-edged sword.  相似文献   

6.
The aim of our study was to determine, as a function of [Cu(2+)]/[LDL] ratios (0.5 and 0.05) and of oxidation phases, the extent of LDL oxidation by assessing the lipid and apo B oxidation products. The main results showed that: (i) kinetics of conjugated diene formation presented four phases for Cu(2+)/LDL ratio of 0.5 and two phases for [Cu(2+)]/[LDL] ratio of 0.05; (ii) oxidation product formation (cholesteryl ester and phosphatidylcholine hydroperoxides, apo B carbonyl groups) occurred early in the presence of endogenous antioxidants, under both copper oxidation conditions; (iii) apo B carbonylated fragments appeared when antioxidants were totally consumed at [Cu(2+)]/[LDL] ratio of 0.5; and (iv) antioxidant concentrations were stable, oxysterol formation was negligible, and no carbonylated fragment was detected at [Cu(2+)]/[LDL] ratio of 0.05. Depending on the copper/LDL ratio, oxidized LDL differ greatly in the nature of lipid peroxidation product and the degree of apo B fragmentation.  相似文献   

7.
Nitric oxide can have both pro-oxidant and antioxidant effects on low-density lipoprotein. Nitric oxide does not appear to react directly with components of LDL. However, in the presence of oxygen (through NO2 and N2O3 formation) or superoxide (through peroxynitrite formation) nitric oxide may cause oxidation of the lipid, protein and antioxidant components of LDL. Conversely, nitric oxide is a potent inhibitor of LDL oxidation when initiated by copper ions or by azo-initiators. The possible implications of these observations to vascular pathology are discussed.  相似文献   

8.
Durak I  Aytaç B  Atmaca Y  Devrim E  Avci A  Erol C  Oral D 《Life sciences》2004,75(16):1959-1966
Effects of ingesting garlic extract on plasma and erythrocyte antioxidant parameters of atherosclerotic patients were investigated in this study. Eleven patients with atherosclerosis participated in the study. They ingested a dose of 1 ml/kg body weight of garlic extract daily for 6 months (study period). Before and after this period, fasting blood samples were obtained, and oxidant (malondialdehyde, MDA and xanthine oxidase, XO) and antioxidant (superoxide dismutase, SOD and glutathione peroxidase, GSH-Px) parameters were studied in plasma and erythrocytes obtained from the patients. Blood samples obtained from 11 healthy subjects served as the controls. Plasma XO activity and MDA levels were higher, but plasma and erythrocyte GSH-Px activities were lower, in patients with atherosclerosis relative to those of the control group. Our results showed that ingestion of garlic extract leads to significantly lowered plasma and erythrocyte MDA levels in the patients even in the absence of changes in antioxidant enzyme activities. Our results also demonstrated the presence of oxidant stress in blood samples from patients with atherosclerosis, but ingesting garlic extract prevented oxidation reactions by eliminating this oxidant stress. Thus, it is possible that reduced peroxidation processes may play a part in some of the beneficial effects of garlic in atherosclerotic diseases.  相似文献   

9.
Damage to apoB100 on low density lipoprotein (LDL) has usually been described in terms of lipid aldehyde derivatisation or fragmentation. Using a modified FOX assay, protein hydroperoxides were found to form at relatively high concentrations on apoB100 during copper, 2,2'-azobis(amidinopropane) dihydrochloride (AAPH) generated peroxyl radical and cell-mediated LDL oxidation. Protein hydroperoxide formation was tightly coupled to lipid oxidation during both copper and AAPH-mediated oxidation. The protein hydroperoxide formation was inhibited by lipid soluble alpha-tocopherol and the water soluble antioxidant, 7,8-dihydroneopterin. Kinetic analysis of the inhibition strongly suggests protein hydroperoxides are formed by a lipid-derived radical generated in the lipid phase of the LDL particle during both copper and AAPH mediated oxidation. Macrophage-like THP-1 cells were found to generate significant protein hydroperoxides during cell-mediated LDL oxidation, suggesting protein hydroperoxides may form in vivo within atherosclerotic plaques. In contrast to protein hydroperoxide formation, the oxidation of tyrosine to protein bound 3,4-dihydroxyphenylalanine (PB-DOPA) or dityrosine was found to be a relatively minor reaction. Dityrosine formation was only observed on LDL in the presence of both copper and hydrogen peroxide. The PB-DOPA formation appeared to be independent of lipid peroxidation during copper oxidation but tightly associated during AAPH-mediated LDL oxidation.  相似文献   

10.
The oxidation of low density lipoprotein (LDL) as a key event in atherosclerosis suggests that antioxidant interventions may reduce the risk of atherosclerosis. However, the better strategies among antioxidant remedies for atherosclerosis remains difficult to be determined. Here, we show that oxidized LDL increases the steady-state level of intracellular hydrogen peroxide through stimulating the protein expressions of Nox1 and Cu/Zn superoxide dismutase (SOD) in human aortic smooth muscle cells (SMCs). The intracellular content of hydrogen peroxide rather than superoxide is a key modulator for vascular SMC (VSMC) proliferation, implying that without co-expression of catalase, increased Cu/Zn-SOD activity alone may not be beneficial to reduce the growth of VSMC in an atherosclerotic plaque.  相似文献   

11.
The presence of diethyl ether enhances the rates of both Ca2+ uptake and ATPase activity in sarcoplasmic reticulum vesicles (SR) isolated from rabbit skeletal muscle. Stopped-flow measurements of Ca2+ transport in SR show that, in the absence of oxalate and other calcium-complexing anions, the initial velocity of the ATP-dependent Ca2+ uptake increases from 60 to 107 nmol of Ca2+/s/mg of protein when 5% (v/v) diethyl ether is present. Similar concentrations of diethyl ether increase steady state levels of Ca2+ accumulation by over 80%. Parallel to the enhancement of the rate of Ca2+ transport, diethyl ether induces an increased rate of Ca2+-dependent ATPase activity. Among four other ether compounds tested, three enhanced the rate of Ca2+ uptake, but none as effectively as diethyl ether, and a fourth reduced the rate of Ca2+ transport by the SR. These results contrast with previous observations concerning the effect of diethyl ether on ATP-dependent Ca2+ transport by SR and are now consistent with a direct pharmacological action of ether as a muscle relaxant at the level of SR Ca2+ transport.  相似文献   

12.
Damage to apoB100 on low density lipoprotein (LDL) has usually been described in terms of lipid aldehyde derivatisation or fragmentation. Using a modified FOX assay, protein hydroperoxides were found to form at relatively high concentrations on apoB100 during copper, 2,2′-azobis(amidinopropane) dihydrochloride (AAPH) generated peroxyl radical and cell-mediated LDL oxidation. Protein hydroperoxide formation was tightly coupled to lipid oxidation during both copper and AAPH-mediated oxidation. The protein hydroperoxide formation was inhibited by lipid soluble α-tocopherol and the water soluble antioxidant, 7,8-dihydroneopterin. Kinetic analysis of the inhibition strongly suggests protein hydroperoxides are formed by a lipid-derived radical generated in the lipid phase of the LDL particle during both copper and AAPH mediated oxidation. Macrophage-like THP-1 cells were found to generate significant protein hydroperoxides during cell-mediated LDL oxidation, suggesting protein hydroperoxides may form in vivo within atherosclerotic plaques. In contrast to protein hydroperoxide formation, the oxidation of tyrosine to protein bound 3,4-dihydroxyphenylalanine (PB-DOPA) or dityrosine was found to be a relatively minor reaction. Dityrosine formation was only observed on LDL in the presence of both copper and hydrogen peroxide. The PB-DOPA formation appeared to be independent of lipid peroxidation during copper oxidation but tightly associated during AAPH-mediated LDL oxidation.  相似文献   

13.
Copper binding to apolipoprotein B-100 (apo B-100) and its reduction by endogenous components of low-density lipoprotein (LDL) represent critical steps in copper-mediated LDL oxidation, where cuprous ion (Cu(I)) generated from cupric ion (Cu(II)) reduction is the real trigger for lipid peroxidation. Although the copper-reducing capacity of the lipid components of LDL has been studied extensively, we developed a model to specifically analyze the potential copper reducing activity of its protein moiety (apo B-100). Apo B-100 was isolated after solubilization and extraction from size exclusion-HPLC purified LDL. We obtained, for the first time, direct evidence for apo B-100-mediated copper reduction in a process that involves protein-derived radical formation. Kinetics of copper reduction by isolated apo B-100 was different from that of LDL, mainly because apo B-100 showed a single phase-exponential kinetic, instead of the already described biphasic kinetics for LDL (namely alpha-tocopherol-dependent and independent phases). While at early time points, the LDL copper reducing activity was higher due to the presence of alpha-tocopherol, at longer time points kinetics of copper reduction was similar in both LDL and apo B-100 samples. Electron paramagnetic resonance studies of either LDL or apo B-100 incubated with Cu(II), in the presence of the spin trap 2-methyl-2-nitroso propane (MNP), indicated the formation of protein-tryptophanyl radicals. Our results supports that apo B-100 plays a critical role in copper-dependent LDL oxidation, due to its lipid-independent-copper reductive ability.  相似文献   

14.
Aim of the study was to evaluate in vivo antioxidant action of medicinal herb Rhodococcum vitis-idaea (Rh.v) on galactosamine (GalN)-induced rat liver toxicity. The results showed that the hepatotoxicity and oxidative stress induced by GalN (700 mg/kg, s.c.) after 24 h evidenced by an increase in serum alanine aminotransferase and glutathione (GSH) S-transferase activities, and lipid peroxidation in liver homogenate were significantly inhibited, when 10 times diluted Rh.v. extract (5 ml/kg, i.p.) was given to rats 12 and 1 h before GalN treatment demonstrating that the extract of Rh.v is a potent antioxidant and protective against GalN-induced hepatotoxicity. The main antioxidant compound of the herb water extract used in the experiment was determined as arbutin, which possess 8% of dry weight of the herb. The electron spin resonance (ESR) spectrometer analysis revealed that the arbutin isolated from Rh.v exhibited strong superoxide and hydroxyl radical scavenging ability.  相似文献   

15.
Lee JY  Yoon JW  Kim CT  Lim ST 《Phytochemistry》2004,65(22):3033-3039
Platycodon grandiflorum A. DC (Campanulaceae) is used as a traditional oriental medicine and also as a food in Korea. Here we investigated its antioxidant activity, and isolated and identified its active compounds. Petroleum ether extracts from the whole root of P. grandiflorum were fractionated by silica gel column chromatography using a solvent gradient (petroleum ether:diethyl ether, v/v; 9:1-5:5). The 8:2 fraction showed a higher radical scavenging activity than the other fractions, and active compounds were purified from this fraction by reversed-phased HPLC. Two active compounds were identified as coniferyl alcohol esters of palmitic and oleic acids by FAB-MS, UV, IR and NMR spectroscopy. The antioxidant activities of these two compounds, which were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide and nitric oxide radical scavenging capacity, were found to be as high as those of BHT or BHA.  相似文献   

16.
A mononuclear (1:1) copper complex of curcumin, a phytochemical from turmeric, was synthesized and examined for its superoxide dismutase (SOD) activity. The complex was characterized by elemental analysis, IR, NMR, UV-VIS, EPR, mass spectroscopic methods and TG-DTA, from which it was found that a copper atom is coordinated through the keto-enol group of curcumin along with one acetate group and one water molecule. Cyclic voltammetric studies of the complex showed a reversible Cu(2+)/Cu(+) couple with a potential of 0.402 V vs NHE. The Cu(II)-curcumin complex is soluble in lipids and DMSO, and insoluble in water. It scavenges superoxide radicals with a rate constant of 1.97 x 10(5) M(-1) s(-1) in DMSO determined by stopped-flow spectrometer. Subsequent to the reaction with superoxide radicals, the complex was found to be regenerated completely, indicating catalytic activity in neutralizing superoxide radicals. Complete regeneration of the complex was observed, even when the stoichiometry of superoxide radicals was 10 times more than that of the complex. This was further confirmed by EPR monitoring of superoxide radicals. The SOD mimicking activity of the complex was determined by xanthine/xanthine oxidase assay, from which it has been found that 5 microg of the complex is equivalent to 1 unit of SOD. The complex inhibits radiation-induced lipid peroxidation and shows radical-scavenging ability. It reacts with DPPH radicals with rate constant 10 times less than that of curcumin. Pulse radiolysis-induced one-electron oxidation of the complex by azide radicals in TX-100 micellar solutions produced strongly absorbing ( approximately 500 nm) phenoxyl radicals, indicating that the phenolic moiety of curcumin remained intact on complexation with copper. The results confirm that the new Cu(II)-curcumin complex possesses SOD activity, free radical neutralizing ability, and antioxidant potential. Quantum chemical calculations with density functional theory have been performed to support the experimental observations.  相似文献   

17.
Ninety-six castrated boars (Duroc x Landrace x Yorkshire) were randomly divided into four groups, each of which was replicated three times with eight pigs. The groups received the same basal diet supplemented with 0, 5, 10, and 20 mg/kg lead, respectively. The malondialdehyde and glutathione levels, antioxidant enzymes activities, and zinc/copper superoxide dismutase (Zn/Cu SOD) mRNA content in the liver were determined to evaluate the lead hepatic intoxication caused by the lead. Results showed the increased lipid peroxides level and the reduced glutathione content, along with a concomitant decrease in the activities of superoxide dismutase, catalase, and glutathione peroxidase. Moreover, the level of hepatic Zn/Cu SOD mRNA was also significantly reduced. We suggest potential mechanism for lead intoxication in liver as follows: lead causes parallel decrease in Zn/Cu SOD mRNA and activities of antioxidant enzymes, leading to the declined ability of scavenging free radicals with excessive production of lipid peroxides, which seriously damages the hepatic structure and function.  相似文献   

18.
The formation of advanced glycation endproducts (AGEs) from glucose in vitro requires both oxygen and a transition metal ion, usually copper. These elements combine to produce reactive oxygen species (ROS) which degrade glucose to AGE-forming compounds. We measured the ability of Cu(2+) to accelerate ROS formation, and the effect of added lens proteins on these reactions. Increasing levels of Cu(2+) accelerated the formation of superoxide anion with glucose and fructosyl-lysine, but the addition of 2.0 mg/ml calf lens proteins completely blocked superoxide formation up to 100 microM of added Cu(2+). Lens proteins, however, had no effect on superoxide generated by the hypoxanthine/xanthine oxidase system. The oxidation of ascorbic acid was increased 170-fold by the addition of 10 microM Cu(2+), but was also completely prevented by added lens proteins. Hydroxyl radical formation, as measured by the conversion of benzoate to salicylate, was increased to 30 nmoles/ml after 18 h by the addition of 100 microM Cu(2+) and 2.5 mM H2O2. This increase was also blocked by the addition of lens proteins. However, hydroxyl radical formation, as estimated by the crosslinking and fragmentation of lens proteins, was observed in the presence of 100 microM Cu(2+), likely at the sites of Cu(2+) binding. Since the ratio of lens proteins to Cu(2+) in human lens is at least 1000-fold higher than those used here, the data argue that Cu(2+) in the lens would be tightly bound to protein, preventing ROS-mediated AGE formation from glucose in vivo.  相似文献   

19.
The ethyl ether extract of A. vulgaris inhibited in vitro microsomal lipid peroxidation (IC50 58.8 microg/ml) and showed moderate ability to scavenge superoxide radicals and to chelate iron ions. The extract (100 mg/kg body weight, po) decreased uninduced and enzymatic microsomal lipid peroxidation in the liver of male rats pretreated with CCl4 (1 ml/kg body weight) by 27 and 40%, respectively. Activity of antioxidant and related enzymes (catalase and glucose-6-phosphate dehydrogenase) inhibited by CCl4 was significantly restored after administration of the extract. The extract itself significantly enhanced superoxide dismutase activity. There was no effect of the extract on hepatic glutathione level and cytochrome P450 content, both were decreased by CCl4. Neither CCl4 nor the tested extract affected activities of NADPH-cytochrome P450 reductase and two monooxygenases, aniline hydroxylase and aminopyrine n-demethylase. It can be concluded that the protective effect of the A. vulgaris extract in CCl4-induced liver injury is mediated by inhibition of microsomal lipid peroxidation and restoring activity of some antioxidant and related enzymes.  相似文献   

20.
Thirty-two barrows (Duroc x Landrace x Yorkshire) were randomly divided into four groups, each of which included eight pigs. The groups received the same basal diet supplemented with 0, 100, 250 and 400mg/kg fluoride, respectively. The malondialdehyde (MDA) and glutathione (GSH) levels, antioxidant enzymes activities and zinc/copper superoxide dismutase (Cu/Zn SOD) mRNA content in the liver were determined to evaluate the fluoride hepatic intoxication. Results showed the increased lipid peroxides (LPO) level and the reduced GSH content, along with a concomitant decrease in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px). Moreover, the level of hepatic Cu/Zn SOD mRNA was also significantly reduced. We suggest the mechanism of fluoride injuring the liver as follows: fluoride causes a decrease in Cu/Zn SOD mRNA and the reduced activities of antioxidant enzymes, leads to the declined ability of scavenging free radicals with excessive production of LPO, which seriously damages the hepatic structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号