首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorothioate oligodeoxynucleotides (ODNs) have been extensively investigated in vivo and in vitro for antisense control of gene expression. It has been shown that cellular uptake of phosphorothioate ODNs in some in vitro cell systems increases in the presence of divalent cations. In this work, we analyze the conformation of phosphorothioate ODNs and specific changes induced in it by various divalent cations using circular dichroism (CD) spectroscopy. CD data were obtained with several phosphorothioate ODNs in the absence and presence of the divalent cations Mg2+, Ca2+, Sr2+, Ba2+ and Mn2+. All CD spectra indicated stable conformations of the ODNs in solution. The spectra were strongly dependent on ODN sequence and composition. Some ODNs such as T23 and another with ‘random’ distribution of bases showed CD spectra characteristic of B-form DNA. Other ODNs which had at least three consecutive guanines in their sequences exhibited spectra characteristic of parallel G-tetraplexes. CD spectra of antisense ODNs exhibited specific responses to divalent cations. Changes in the conformation were not simply due to ionic strength effects. Mn2+ diminished secondary structure in some ODNs. Group II divalent ions stabilized the parallel G-tetraplexes, and Mg2+ generally had the weakest stabilizing efficiency. Each sequence/ion combination had a specific response so these effects cannot be generalized. These sequence-dependent, divalent ion-sensitive, and structurally unique solution conformations may be related to ion-mediated ODN uptake.  相似文献   

2.
Leakage of ions and low-molecular-weight metabolites from Lettre cells is induced by synthetic melittin, as effectively as by melittin isolated from bee venom; in each case leakage is inhibited by Ca2+, Zn2+ or H+. Inhibition of leakage by divalent cations is reversible in that Lettre cells incubated with melittin (or with Triton X-100) in the presence of inhibitory amounts of Zn2+, when freed of Zn2+ by EGTA or by centrifugation, begin to leak (in Zn2(+)-sensitive manner). Electrorotation of Lettre cells is altered by melittin, compatible with membrane permeabilization; melittin plus Zn2+ does not alter electrorotation until Zn2+ (and unbound melittin) are removed. Melittin or Triton X-100 added to calcein-loaded liposomes induces leakage of calcein; divalent cations inhibit. Energy transfer between liposome-associated melittin and 2-, 7- or 12-(9-anthroyloxy)stearate (AS) is maximal with 12-AS; addition of Zn2+ has little effect. Circular dichroism spectra of melittin plus liposomes are unaffected by Zn2+. These results show that the formation of divalent cation-sensitive pores is not dependent on the presence of endogenous membrane proteins and that the action of divalent cations is not by displacement of melittin (or Triton) from the lipid bilayer.  相似文献   

3.
Outer membrane protein TonA, the receptor for coliphage T5, has been partially purified and incorporated into the phospholipid bilayer of liposomes. Adsorption of the phage to its receptor in either a free or liposome-associated form is fast and sufficient to trigger the ejection of encapsidated DNA. In both in vitro systems the exit of DNA from the phage capsid is a very slow process. Ejected DNA can partially accumulate inside the liposome aqueous compartment, but the transfer from the phage head to the liposome internal space is never complete, perhaps because the liposome volume is too small. The presence of polyamines or divalent cations (magnesium) or both in the incubation medium diminished the extent of DNA ejection, possibly by stabilizing DNA inside the head. DNA movement was slowed as the temperature was decreased from 37 to 18 degrees C. Furthermore, incubation at 4 degrees C totally prevented this DNA movement, even if a large part of the DNA had already exited the capsid.  相似文献   

4.
The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl+) and the polarized first hydration shell waters of divalent cations (Mg2+, Ca2+) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.  相似文献   

5.
AB-X transition of polyh(dA-dT).poly(dA-dT) was observed to occur in methanol-water mixtures with methanol concentrations higher than 50% in the presence of a specific combination of monovalent and divalent cations. In the presence of Na+, divalent cations induce denaturation of poly(dA-dT).poly(dA-dT) accompanied by condensation and/or aggregation, and effect similar to that observed previously with random sequence DNA (Votavová, Kucerová, Felsberg and Sponar, J. Biomol. Struct. Dyn. 4,477-489, 1986). In the presence of Cs+ cations a B-X transition was induced by addition of Ca2+ or Mn2+ but not Mg2+ or Ni2+ ions. Circular dichroism and ultraviolet spectroscopy demonstrate that the X conformation is a double stranded form of poly(dA-dT).poly(dA-dT) belonging presumably to the B family which, however has an altered base stacking. The X conformation of poly(dA-dT).poly(dA-dT) found in methanol-water mixtures is a condensed and/or aggregated form. In contrast, the X conformation characterized by similar CD spectra observed in high salt concentrations is not aggregated up to a concentration of 6 M CsF. In methanol-water mixtures (A+T)-rich bacterial DNA behaves essentially as a random sequence DNA revealing no detectable amount of the X form. On the other hand crab (Cancer pagurus) satellite and crab non-satellite DNAs containing varying amounts of (dA-dT)n.(dA-dT)n sequences were shown to undergo a B-X transition, at least partly, in both methanol-water mixtures and 6 M CsF solutions.  相似文献   

6.
A facile procedure for the incorporation of phenothiazine at the terminus of oligodeoxynucleotides is reported. Phenothiazine is covalently linked to the 5'-position of 2'-deoxyadenosine and thymidine. Next, the corresponding phosphoramidites are prepared, and then the labeled nucleosides are incorporated in DNA using an automated DNA solid-phase synthesizer. Phenothiazine labeled oligodeoxynucleotides form stable B-form duplexes with similar melting temperatures, CD spectra, and DSC traces compared to unlabeled DNA duplexes. The favorable photophysical properties of phenothiazine are also retained after covalent attachment to the oligodeoxynucleotide.  相似文献   

7.
The interaction of dipalmitoylphosphatidylgly cerol DPPG) liposomes with divalent ions of magnesium, calcium and barium has been investigated with laser-Raman spectroscopy over the temperature range of 0–60°C. The effect of Ca2+ ions was also investigated as a function of concentration. At a Ca2+/DPPG molar ratio of 0.1, the number of trans carbon to carbon bonds in the hydrocarbon domain of the phospholipid and the lateral order of the hydrocarbon chains was increased both below and above the gel to liquid crystal transition. At higher Ca2+ concentrations the number of trans bonds and the lateral order is further increased over the entire temperature range studied, while the transition disappears. Magnesium and barium ions have a much smaller ordering effect on the side-chain packing of DPPG liposomes. At a molar ratio of 0.3, the gel to liquid crystal transition is still discernible for DPPG liposomes in the presence of Ba2+ ions, but not in the presence of Mg2+ ions.  相似文献   

8.
Thermal denaturation of deoxyribonucleic acid (DNA) in situ in individual unbroken cells is studied by a cytofluorometric method. This method allows us to investigate DNA denaturation in the presence of divalent cations at concentrations reported to be necessary to maintain native structure of nuclear chromatin. Under these conditions the pattern of DNA denaturation is very different than when studied in the presence of ethylenediaminetetraacetate or citrate. The results suggest that with divalent cations present, the histone basic charges are more uniformly distributed along whole nuclear DNA. Various cell types exhibit great differences in sensitivity to DNA denaturation when assayed in the presence of 1 mM MgCl2. Human lymphocytes, monocytes and certain kinds of human leukemic cells show differences large enough to be used as a parameter for their recognition in mixed samples. Possible applications of the method in basic research on chromatin conformation and as a tool for cell recognition in diagnostic cytology or in the classification of human leukemia are proposed.  相似文献   

9.
The formation of complexes of polynucleotides (DNA, poly A.poly U) with liposomes from egg lecithins, L-alpha-phosphatidylcholine, dimirystoyl and other lipids in the presence of divalent cations was studied by differential scanning microcalorimetry circular dichroism and turbidimetry. It was shown that the secondary structure of polynucleotides (double or triple helix) was necessary for the formation of these complexes. This structure was partially destroyed during formation of complexes. It was shown, that three main types of lipids, i.e. phosphatidylcholine, phosphatidylethanolamine and sphingomyelin participate in interactions between liposomes, polynucleotides and Mg2+.  相似文献   

10.
The thermal stabilities of the duplexes formed between 4'-thio-modified oligodeoxynucleotides and their DNA and RNA complementary strands were determined and compared with those of the corresponding unmodified oligodeoxynucleotides. A 16mer oligodeoxynucleotide containing 10 contiguous 4'-thiothymidylate modifications formed a less stable duplex with the DNA target (deltaTm/modification -1.0 degrees C) than the corresponding unmodified oligodeoxynucleotide. However, when the same oligodeoxynucleotide was bound to the corresponding RNA target, a small increase in Tm was observed (deltaTm/modification +0.16 degrees C) when compared with the unmodified duplex. A study to identify the specificity of an oligodeoxynucleotide containing a 4'-thiothymidylate modification when forming a duplex with DNA or RNA containing a single mismatch opposite the modification found the resulting Tms to be almost identical to the wild-type duplexes, demonstrating that the 4'-thio-modification in oligodeoxynucleotides has no deleterious effect on specificity. The nuclease stability of 4'-thio-modified oligodeoxynucleotides was examined using snake venom phosphodiesterase (SVPD) and nuclease S1. No significant resistance to degradation by the exonuclease SVPD was observed when compared with the corresponding unmodified oligodeoxynucleotide. However, 4'-thio-modified oligodeoxynucleotides were found to be highly resistant to degradation by the endonuclease S1. It was also demonstrated that 4'-thio-modified oligodeoxynucleotides elicit Escherichia coli RNase H hydrolysis of the RNA target only at high enzyme concentration.  相似文献   

11.
Mithramycin (MTR) is an antitumor compound that inhibits RNA and DNA polymerase action by forming a non covalent complex with double strand DNA, in the presence of divalent cations. We have shown that in the presence of Mg2+, MTR binds to right-handed poly(dG-m5dC) as a dimer in the right-handed screwness conformation but cannot bind to left-handed poly(dG-m5dC).  相似文献   

12.
Optical spectroscopic techniques such as CD, Raman scattering, and fluorescence imaging allowed us to analyze the complex formation and vectorization of a single-stranded 20-mer phosphorothioate oligodeoxynucleotide with a 15-mer amphipathic peptide at molecular and cellular levels. Different solvent mixtures (methanol and water) and molecular ratios of peptide/oligodeoxynucleotide complexes were tested in order to overcome the problems related to solubility. Optimal conditions for both spectroscopic and cellular experiments were obtained with the molecular ratio peptide/oligodeoxynucleotide equal to 21:4, corresponding to a 7:5 ratio for their respective +/- charge ratio. At the molecular level, CD and Raman spectra were consistent with a alpha-helix conformation of the peptide in water or in a methanol-water mixture. The presence of methanol increased considerably the solubility of the peptide without altering its alpha-helix conformation, as evidenced by CD and Raman spectroscopies. UV absorption melting profile of the oligodeoxynucleotide gave rise to a flat melting profile, corresponding to its random structure in solution. Raman spectra of oligodeoxynucleotide/peptide complexes could only be studied in methanol/water mixture solutions. Drastic changes observed in Raman spectra have undoubtedly shown: (a) the perturbation occurred in the peptide secondary structure, and (b) possible interaction between the lysine residues of the peptide and the oligodeoxynucleotide. At the cellular level, the complex was prepared in a mixture of 10% methanol and 90% cell medium. Cellular uptake in optimal conditions for the oligodeoxynucleotide delivery with low cytotoxicity was controlled by fluorescence imaging allowing to specifically locate the compacted oligonucleotide labeled with fluorescein at its 5'-terminus with the peptide into human glioma cells after 1 h of incubation at 37 degrees C.  相似文献   

13.
E. coli DNA topoisomerase I catalyzes the hydrolysis of short, single stranded oligodeoxynucleotides. It also forms a covalent protein-DNA complex with negatively supercoiled DNA in the absence of Mg2+ but requires Mg2+ for the relaxation of negatively supercoiled DNA. In this paper we investigate the effects of various divalent metals on catalysis. For the relaxation reaction, maximum enzyme activity plateaus after 2.5 mM Mg2+. However, the rate of cleavage of short oligodeoxynucleotide increased linearly between 0 and 15 mM Mg2+. In the oligodeoxynucleotide cleavage reaction, Ca2+, Mn2+, Co2+, and Zn2+ inhibit enzymatic activity. When these metals are coincubated with Mg2+ at equimolar concentrations, the normal effect of Mg2+ is not detectable. Of these metals, only Ca2+ can be substituted for Mg2+ as a metal cofactor in the relaxation reaction. And when Mg2+ is coincubated with Mn2+, Co2+, or Zn2+ at equimolar concentrations, the normal effect of Mg2+ on relaxation is not detectable. We propose that Mg2+ allows the protein-DNA complex to assume a conformation necessary for strand passage and enhance the rate of enzyme turnover.  相似文献   

14.
Abstract Southern bean mosaic virus (SBMV) virions swell when the capsid-associated divalent cations are removed with EDTA at pH 7.5, resulting in an approximate 99% decline in the specific infectivity. Recompacting swollen virions either with divalent cations at pH 7.5, or by lowering the pH to 5.0 (in the absence or in presence of divalent cations) fails to restore complete infectivity. In contrast to swollen SBMV, RNA within the recompacted virions is fully protected from ribonuclease attack. Removing divalent cations with EDTA at pH 5.0 causes no infectivity loss or conformational change. These results indicate that if SBMV conformation is altered once then an irreversible loss in the infectivity occurs and the divalent cations play no role per se , in the infection process. Furthermore, observations based upon the sedimentation behaviour of ribonuclease-treated SBMV indicate that RNA must be physically intact for capsid recompaction to occur. Obviously, structural rearrangements at the capsidsurface (e.g., regeneration of intersubunit interactions) and at the virion interior (i.e., RNA-protein linkages) are involved collectively in conferring conformational stability to the recompacted SBMV.  相似文献   

15.
DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg2+ sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early evolutionary choices for DNA topology.  相似文献   

16.
The interactions of the antitumor antibiotics, chromomycin A3, with a variety of metal cations in the pH range of 3.0–8.5 were systematically studied by CD, absorption, and 1H-nmr spectroscopies. Results were compared with those obtained in the presence of increasing amounts of calf thymus DNA. The negatively charged chromomycin A3, pKa 6.3, forms aggregates that become ordered and smaller in size, in the presence of variety of metal cations. Spectrophotometric titrations have shown that binding of the neutral drug to DNA at pH 4.5 does not require divalent cations, although the strength of the binding is greatly enhanced in their presence. At higher pH values (> 7.0) and low DNA/drug ratio ( > 20), the metal cations are necessary to induce the binding between chromomycin A3 and DNA. At higher DNA/drug ratios (> 100: 1), an appreciable proportion of the drug is bound even in the absence of divalent cations. Its binding affinity to the DNA is enhanced in the presence of these cations and at low pH values. Therefore, we conclude that chromomycin A3 binds in two related modes, in the presence and in the absence of divalent cations. The spectral data accumulated indicate the metal cation is involved in the binding of the drug to the DNA by forming a drug–metal–DNA ternary complex.  相似文献   

17.
The interactions between a drug and lipids may be critical for the pharmacological activity. We previously showed that the ability of a fluoroquinolone antibiotic, ciprofloxacin, to induce disorder and modify the orientation of the acyl chains is related to its propensity to be expelled from a monolayer upon compression [1]. Here, we compared the binding of ciprofloxacin on DPPC and DPPG liposomes (or mixtures of phospholipids [DOPC:DPPC], and [DOPC:DPPG]) using quasi-elastic light scattering and steady-state fluorescence anisotropy. We also investigated ciprofloxacin effects on the transition temperature (T(m)) of lipids and on the mobility of phosphate head groups using Attenuated Total Reflection Fourier Transform Infrared-Red Spectroscopy (ATR-FTIR) and (31)P Nuclear Magnetic Resonance (NMR) respectively. In the presence of ciprofloxacin we observed a dose-dependent increase of the size of the DPPG liposomes whereas no effect was evidenced for DPPC liposomes. The binding constants K(app) were in the order of 10(5) M(-1) and the affinity appeared dependent on the negative charge of liposomes: DPPG>DOPC:DPPG (1:1; M:M)>DPPC>DOPC:DPPC (1:1; M:M). As compared to the control samples, the chemical shift anisotropy (Deltasigma) values determined by (31)P NMR showed an increase of 5 and 9 ppm for DPPC:CIP (1:1; M:M) and DPPG:CIP (1:1; M:M) respectively. ATR-FTIR experiments showed that ciprofloxacin had no effect on the T(m) of DPPC but increased the order of the acyl chains both below and above this temperature. In contrast, with DPPG, ciprofloxacin induced a marked broadening effect on the transition with a decrease of the acyl chain order below its T(m) and an increase above this temperature. Altogether with the results from the conformational analysis, these data demonstrated that the interactions of ciprofloxacin with lipids depend markedly on the nature of their phosphate head groups and that ciprofloxacin interacts preferentially with anionic lipid compounds, like phosphatidylglycerol, present at a high content in these membranes.  相似文献   

18.
The Escherichia coli Rep protein is a DNA helicase that is involved in DNA replication. We have examined the effects of DNA binding on the assembly state of the Rep protein using small-zone gel permeation chromatography and chemical crosslinking of the protein. Complexes of Rep protein were formed with short single-stranded and duplex hairpin oligodeoxynucleotides with lengths such that only a single Rep monomer could bind per oligodeoxynucleotide (i.e. 2 Rep monomers could not bind contiguously on the oligodeoxynucleotides). In the absence of DNA, Rep protein is monomeric (Mr 72,800) up to concentrations of at least 8 microM (monomer), even in the presence of its nucleotide cofactors (ATP, ADP, ATP-gamma-S). However, the binding of Rep monomers to single-stranded (ss) oligodeoxynucleotides, d(pN)n (12 less than or equal to n less than or equal to 20), induces the Rep monomers to oligomerize. Upon treatment of the Rep-ss oligodeoxynucleotide complexes with the protein crosslinking reagent dimethyl-suberimidate (DMS) and subsequent removal of the DNA, crosslinked Rep dimers are observed, independent of oligodeoxynucleotide length (n less than or equal to 20). Furthermore, short duplex oligodeoxynucleotides also induce the Rep monomers to dimerize. Formation of the Rep dimers results from an actual DNA-induced dimerization, rather than the adventitious crosslinking of Rep monomers bound contiguously to a single oligodeoxynucleotide. The purified DMS-crosslinked Rep dimer shows increased affinity for DNA and retains DNA-dependent ATPase and DNA helicase activities, as shown by its ability to unwind M13 RF DNA in the presence of the bacteriophage f1 gene II protein. On the basis of these observations and since the dimer is the major species when Rep is bound to DNA, we suggest that a DNA-induced Rep dimer is the functionally active form of the Rep helicase.  相似文献   

19.
20.
Cationic liposomes give rise to stable complexes with DNA molecules (lipoplexes) that are of great interest for gene delivery applications. In particular, liposomes made up by a cationic lipid (DOTAP or DC-Chol) and a zwitterionic lipid (DOPE), produce stable adducts with single and double-stranded DNA oligonucleotides. Formation of these lipoplexes has been further addressed here by circular dichroism spectroscopy (CD) and by other independent biophysical methods. Titration of DNA oligonucleotides with cationic liposomes resulted into significant modifications of their circular dichroic bands. Such spectral modifications were ascribed to progressive DNA condensation and loss of native conformation, as a consequence of the electrostatic interactions taking place between the phosphate groups of DNA and the positively charged head groups of cationic lipids. In all cases, the loss of the CD feature characteristic of the native DNA conformation closely matched the inflection point of Zeta potential profiles. The resulting adducts showed peculiar and non-canonical CD spectra, while exhibiting appreciable stability at physiological pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号