首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
用蔗糖梯度离心法对Novikoff肝癌细胞的多聚(A)~+mRNA进行了链长分部。沉降在13S和15S的组分6和组分7富集了B_(23)mRNA,其体外转译产物可特异地被抗蛋白B_(23)的抗体免疫吸附,被吸附的蛋白在SDS-PAGE中迁移到大约37,000道尔顿的区带。另外,用多聚核糖体免疫吸附技术提纯了少量B_(23)mRNA,它在体外转译系统中也指导合成了分子量约为37,000道尔顿的蛋白质。  相似文献   

2.
七星瓢虫成熟雌虫脂肪体总RNA和poly(A)~+RNA中可转译mRNA的水平约为雄虫和不成熟雌虫的两倍,其中所含的卵黄原蛋白mRNA可在体外转译系统中指导卵黄原蛋白多肽的合成。 雌虫取食人工饲料时,其脂肪体RNA中可转译mRNA的水平很低,不能指导卵黄原蛋白多肽的合成。保幼激素类似物能诱导可转译卵黄原蛋白mRNA的出现。  相似文献   

3.
本研究采用人工气候室模拟自然热环境对大白鼠进行急性热暴露实验。用苯酚法提取大白鼠肝脏总RNA;用 Oligo(dT)-纤维素亲和层析柱分离出Poly(A)+mRNA。将各条件下的大白鼠肝脏Poly(A)+mRNA在麦胚无细胞体外转译系统中表达。结果证明急性热暴露大白鼠肝脏同样能生成分子量分别为71kD、90kD、98kD和 110kD的一组热休克蛋白。  相似文献   

4.
目的 :建立大鼠脑组织线粒体的体外蛋白合成体系并对其合成产物进行电泳分离和分子量鉴定。方法 :分离大鼠脑组织线粒体 ,用3 H 亮氨酸掺入法探索线粒体体外翻译的最佳条件 ,3 5S 蛋氨酸掺入并对翻译后产物经SDS 聚丙烯酰胺凝胶电泳和放射自显影进行分子量鉴定。结果 :分离的线粒体氧化磷酸化偶联程度高 ,呼吸控制率(RCR)在 3.5~ 5 .5之间 ;体外3 H 亮氨酸的掺入活性在 6 0min内近似线性增长 ,而后维持在一相对稳定水平 ;3 H 亮氨酸的掺入活性随线粒体蛋白浓度而增加 ,而单位线粒体蛋白的掺入活性在 1mg/ml时最高 ;3 5S 蛋氨酸掺入SDS 聚丙烯酰胺凝胶电泳后可观察到清晰的 8条自显影带 ,分子量分别为 (单位Kda) 86、6 6、5 6、43、33、2 9、2 5、18。结论 :用此方法建立的脑线粒体离体翻译反应体系具有高活性和翻译忠实性等特点 ,是研究脑mtDNA在翻译水平的表达及调控的有效方法  相似文献   

5.
在七星瓢虫(Coccinella septempunctata)中,保幼激素调控脂肪体中卵黄原蛋白基因的表达。蛋白质合成实验证明,保幼激素类似物大幅度地促进取食人工饲料的雌虫脂肪体中卵黄原蛋白的合成。保幼激素类似物的作用有高度选择性,使卵黄原蛋白占总蛋白的百分比提高12倍。取食人工饲料的雌虫中,脂肪体RNA含量及其转译活性均极低,转译产物中不存在卵黄原蛋白多肽。保幼激素类似物能显著提高脂肪体RNA的含量及其中可转译mRNA的水平。处理后的雌虫,象蚜虫饲养的成熟雌虫一样,其脂肪体RNA能在体外转译系统中指导卵黄原蛋白多肽的合成,并在变性琼脂糖凝胶电泳上显示一条高分子量的带(约5100核苷酸),初步鉴定为卵黄原蛋白mRNA。由此证明,保幼激素类似物能诱导卵黄原蛋白mRNA的出现和积累。  相似文献   

6.
孙震晓 《生物技术》2004,14(6):43-44
目的:建立一种简便、快捷的β淀粉样蛋白的电泳分离方法。方法:比较以往报道的各种低分子量蛋白的电泳分离方法,对电泳缓冲液系统、分离胶和浓缩胶的浓度,电泳程序等进行了优化,结果:用改进的Two Phases Tris-Trincine-SDS-PAGE可以简单,快速,清地分离β淀粉样蛋白,结论:新建立的Two Phases Tris-Trincine-SDS-PAGE是一种较好地分离β淀粉样蛋白和其它超低分子量蛋白或多肽的电泳方法。  相似文献   

7.
翟启慧  龚和 《昆虫学报》1990,33(3):257-264
在七星瓢虫(Coccinella septempunctata)中,保幼激素调控脂肪体中卵黄原蛋白基因的表达.蛋白质合成实验证明,保幼激素类似物大幅度地促进取食人工饲料的雌虫脂肪体中卵黄原蛋白的合成.保幼激素类似物的作用有高度选择性,使卵黄原蛋白占总蛋白的百分比提高12倍.取食人工饲料的雌虫中,脂肪体RNA含量及其转译活性均极低,转译产物中不存在卵黄原蛋白多肽.保幼激素类似物能显著提高脂肪体RNA的含量及其中可转译mRNA的水平.处理后的雌虫,象蚜虫饲养的成熟雌虫一样,其脂肪体RNA能在体外转译系统中指导卵黄原蛋白多肽的合成,并在变性琼脂糖凝胶电泳上显示一条高分子量的带(约5100核苷酸),初步鉴定为卵黄原蛋白mRNA.由此证明,保幼激素类似物能诱导卵黄原蛋白mRNA的出现和积累.  相似文献   

8.
为了用Wistar大鼠研究CD9对精卵融合的影响和与其它精卵融合相关蛋白的作用,克隆了Wistar大鼠的CD9cDNA.测序结果显示,Wistar大鼠的CD9 cDNA编码区与GenBank中发布的SD( Sprague-Dawley)大鼠相同,但在3′非翻译区多一个T.用Western blotting方法检测Wistar大鼠睾丸和卵巢总蛋白发现睾丸和卵巢里均表达内源性CD9蛋白,分子量相同.此外,在大肠杆菌中表达了GST-CD9融合蛋白,并用GST标签纯化CD9蛋白,为体外研究CD9与其它精卵融合相关蛋白的作用提供参考.  相似文献   

9.
运动员剧烈运动后血中应激免疫抑制蛋白的产生   总被引:18,自引:0,他引:18  
我们曾经报道,大鼠或小鼠在束缚应激后血中产生了一种能抑制免疫功能的应激免疫抑制蛋白,(又称Neu-roimmuneprotein,NIP,神经免疫蛋白)。本工作证明,运动员在大运动量的训练后血清中也产生一种能抑制淋巴细胞转化的物质,它的生化特性及分子量与前述大鼠和小鼠中的应激免疫抑制蛋白相同。在体外实验中,应激大鼠的血清培养人淋巴结细胞,获得了与大鼠实验相同的结果,即人淋巴结细胞也能产生应激免疫抑制蛋白。同时小鼠束缚应激的血清和大运动量的人类血清可以分别抑制人正常淋巴细胞和正常小鼠由ConA诱导的淋巴细胞转化,以上结果表明,这种应激免疫抑制蛋白的种属特异性不强。  相似文献   

10.
微清蛋白(parvalbumin)为肌肉和脑内一种分子量12000的 Ca~(2+)结合蛋白质,现已从大鼠睾丸中分离获得。利用大鼠微清蛋白 cDNA 探针,在睾丸中显示了微清蛋白 mRNA,表明它在睾丸中合成;睾丸微清蛋白也为编码肌肉微清蛋白的同一基因的产物。用免疫组化法可将微清蛋白定位于 Leydig 细胞和成熟精细胞(1~15期)的顶体区。睾丸甾体生成在大鼠生命过程中有两个活跃阶段:第一阶段高峰出现在出生前3天,  相似文献   

11.
Serum amyloid A protein (SAA) is an acute-phase apolipoprotein of high-density lipoprotein (HDL). Its N-terminal sequence is identical with that of amyloid A protein (AA), the subunit of AA amyloid fibrils. However, rats do not develop AA amyloidosis, and we report here that neither normal nor acute-phase rat HDL contains a protein corresponding to SAA of other species. mRNA coding for a sequence homologous with the C-terminal but not with the N-terminal part of human SAA is synthesized in greatly increased amounts in acute-phase rat liver. These observations indicate that the failure of rats to develop AA amyloid results from the absence of most of the AA-like part of their SAA-like protein, and that the N-terminal portion of SAA probably contains the lipid-binding sequences.  相似文献   

12.
13.
14.
15.
The distinction between exudates and transudates is very important in the patient management. Here we evaluate whether the acute-phase protein serum amyloid A (SAA), in comparison with C reactive protein (CRP) and total protein (TP), can be useful in this discrimination. CRP, SAA, and TP were determined in 36 exudate samples (27 pleural and 9 ascitic) and in 12 transudates (9 pleural and 3 ascitic). CRP, SAA, and TP were measured. SAA present in the exudate corresponded to 10% of the amount found in serum, that is, the exudate/serum ratio (E/S) was 0.10 +/- 0.13. For comparison, the exudate/serum ratio for CRP and TP was 0.39 +/- 0.37 and 0.68 +/- 0.15, respectively. There was a strong positive correlation between serum and exudate SAA concentration (r = 0.764; p < 0.0001). The concentration of SAA in transudates was low and did not overlap with that found in exudates (0.02-0.21 versus 0.8-360.5 g/mL). SAA in pleural and ascitic exudates results mainly from leakage of the serum protein via the inflamed membrane. A comparison of the E/S ratio of SAA and CRP points SAA as a very good marker in discriminating between exudates and transudates.  相似文献   

16.
Serum amyloid A (SAA) is an acute-phase protein that circulates mainly on plasma HDL. SAA interactions with its functional ligands and its pathogenic deposition in reactive amyloidosis depend, in part, on the structural disorder of this protein and its propensity to oligomerize. In vivo, SAA can displace a substantial fraction of the major HDL protein, apoA-I, and thereby influence the structural remodeling and functions of acute-phase HDL in ways that are incompletely understood. We use murine SAA1.1 to report the first structural stability study of human plasma HDL that has been enriched with SAA. Calorimetric and spectroscopic analyses of these and other SAA-lipid systems reveal two surprising findings. First, progressive displacement of the exchangeable fraction of apoA-I by SAA has little effect on the structural stability of HDL and its fusion and release of core lipids. Consequently, the major determinant for HDL stability is the nonexchangeable apoA-I. A structural model explaining this observation is proposed, which is consistent with functional studies in acute-phase HDL. Second, we report an α-helix folding/unfolding transition in SAA in the presence of lipid at near-physiological temperatures. This new transition may have potentially important implications for normal functions of SAA and its pathogenic misfolding.  相似文献   

17.
18.
Estradiol (E2) induces a complementary increase in both the amount of mRNA and the rate of translation of the mRNA in the uterus of ovariectomized mature rats. The mechanism of the translational effect was evaluated by measuring the functional capacity of uterine tRNA isolated from control, E2 (1 h)- and E2 (14 h)-treated ovariectomized rats to support amino acid acceptor activity and uterine protein synthesis. The specific amino acid acceptor activity (SAA) of deacylated tRNA for 18 individual amino acids was determined using a tRNA-dependent rat liver tRNA synthetase preparation. The SAA was the same for all amino acids for uterine tRNA from control and E2 (1 h)-treated rats but was increased for uterine tRNA from E2 (14 h)-treated rats to levels that were 1.4-4.3 times the SAA of uterine tRNA from control rats. When uterine tRNA from control and E2 (14 h)-treated rats was incubated with purified tRNA nucleotidyltransferase, the SAA for all amino acids was increased an average of 1.6-fold for control tRNA and 0.3-fold for tRNA from E2 (14 h)-treated rats. The ability of uterine tRNA to support maximal rates of protein synthesis in tRNA-dependent uterine ribosome protein synthesis assay was increased by either in vivo treatment of the rats with estradiol or by in vitro repair of the 3'-CCA terminus of this tRNA by nucleotidyltransferase. These observations suggest that E2 may increase the rate of mRNA translation in the uterus, in part, by increasing the proportion of certain tRNAs with intact and functional 3'-CCA acceptor termini.  相似文献   

19.
Amyloid A protein (AA), the major fibril protein in AA-amyloidosis, is an N-terminal cleavage product of the precursor protein, serum amyloid A (SAA). Using mass spectrometry and amino-acid sequencing, we identified and characterized two novel AA protein subsets co-deposited as amyloid fibrils in an patient having AA-amyloidosis associated with rheumatoid arthritis. One of the AA proteins corresponded to positions 2-76 (or 75) of SAA2 alpha and the other corresponded to positions 2-76 (or 75) of known SAA1 subsets, except for position 52 or 57, where SAA1 alpha has valine and alanine and SAA1 beta has alanine and valine in position 52 and 57, respectively, whereas the AA protein had alanine at the both positions. Our findings (1), demonstrate that not only one but two SAA subsets could be deposited together as an AA-amyloid in a single individual and (2), support the existence of a novel SAA1 allotype, i.e., SAA152,57Ala.  相似文献   

20.
Serum amyloid A (SAA) is synthesized by the liver during the acute phase. Local expression of SAA mRNA has been reported also in non-liver cells, a potential local source of SAA protein not related to the systemic acute phase response. SAA function has not been established yet. In the present study, we identified SAA as a protein expressed by chondrocytes and myoblasts in response to inflammatory stimula. In both cell systems, SAA mRNA and protein expression is strongly stimulated by bacterial lipopolysaccharide treatment. SAA mRNA expression is also enhanced during terminal differentiation of cells of the chondrogenic and myogenic lineage; mRNA is barely detectable in prechondrogenic cells and is highly expressed in differentiated hyperthrophic chondrocytes. An increased level of SAA mRNA was also observed in vivo when we compared mRNA extracted from tibiae of 10 day embryos, still fully cartilaginous, with tibiae from 18 day embryos, a stage when the endochondral ossification process has already started. p38 activation, a well-known event of the chondrogenesis signaling cascade, controls expression of SAA in cartilage following inflammatory stimuli. SAA secreted by stimulated chondrocytes is associated with cholesterol. Cholesterol is synthesized by the same chondrocytes and is also increased in inflammatory conditions. A role of SAA in cholesterol homeostasis in chondrocytes is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号