首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray microanalysis was used to study ion distribution in nodulesof soybean [Glycine max (L.)] cv. Clarke formed with two strainsof Bradyrhizobium japonicum ; RCR3407 and RCR3442. Previousstudies have shown that the oxygen diffusion barrier in nodulesof the RCR3442 symbiosis has slower responses to acetylene andincreased external oxygen than those of the RCR3407 symbiosisand this variation is correlated with differences in glycoproteincontent. X-ray maps and cross-cortical cell counts of nodulesformed by either strain show very similar zonal distributionsof Mg, K, S and Ca across the cortex. Levels of K appear tobe similar but levels of Mg, S and Ca seem to be lower in nodulesof the RCR3442 symbiosis. These results suggest that the contentand distribution of Mg, S and Ca reflect an involvement in theoperation of the cortical diffusion barrier.Copyright 1994,1999 Academic Press Glycine max, X-ray microanalysis, nodules, oxygen diffusion, ion distribution, Mg, Ca, K, S  相似文献   

2.
Root nodules of Lupinus albus (L.) cv. Multolupa were subjectedto short- and medium-term stresses by lowering rhizosphere temperaturefrom 25 to 16°C (2 h), detopping plants (3 h), darkeningplants (21 h) or exposing roots to 20 mol m–3 KNO3 for4 d. All experimental treatments produced increases in oxygendiffusion resistance, compared with control plants. These correlatedwith structural changes in the nodule cortex, which is describedin detail for the first time. The most noticeable change isthe occlusion of intercellular spaces by a glycoprotein whichwas identified using the monoclonal antibody MAC236. This glycoproteinwas also found surrounding bacteria in intercellular spacesof the cortex of control nodules. Key words: Oxygen diffusion resistance, glycoprotein, nodules, nitrogen fixation, Lupinus albus  相似文献   

3.
Abstract. A glycoprotein which occludes intercellular spaces in the inner cortex of legume nodules may be involved in controlling oxygen diffusion into rhizobial-infected cells. Here we investigated this possibility by localizing the glycoprotein using monoclonal antibodies and immunogold labelling in nodulated roots of soybean cv. Clarke inoculated with Bradyrhizobium japonicum strain RCR3442 exposed to atmospheres with either 10, 21 (control) or 40% oxygen for 28d. Infected cells showed evidence of premature senescence when grown in above or below ambient pO2 particularly at 10% oxygen, although cortical cells appeared to be little altered by oxygen treatment. In the inner cortical cells, more glycoprotein was seen to be occluding intercellular spaces of those nodules subjected to 40% oxygen and less in those nodules exposed to 10% oxygen, when compared to controls. This observation, made at the light microscope level (using silver enhancement) was confirmed under the TEM using immunogold labelling. Therefore, it is suggested that intercellular space glycoprotein is one of the structural components of the diffusion resistance in the cortex of legume nodules.  相似文献   

4.
Summary The monoclonal antibodies MAC236 and MAC265, raised against a soluble component of pea nodules, were used to elucidate the presence and subcellular localization of glycoprotein epitopes during the development of lupin (Lupinus albus L. cv. Multolupa) nodules, by means of immunocytochemistry and Western blot analysis. These antibodies recognize a single band of 95 kDa in pea, soybean and bean nodules, whilst two different bands of 240 and 135 kDa cross-react with MAC236 and MAC265 respectively in lupin nodules. This fact may indicate that the recognized epitopes can be present in different subcellular compartments and/or play different roles through the development of functional nodules. The results show that MAC265 is mainly associated with Bradyrhizobium infection and with the development of nodule primordium, in the first stages of nodulation. MAC265 is also detected when glycoprotein transport takes place across the cytoplasm and the cell wall, and also in the intercellular spaces of the middle cortex, attached to cell walls. The amount of MAC265 remains constant through nodule development. In contrast the amount of MAC236 increases with nodule age, parallel to the establishment of nitrogenase activity. This antibody is localized in cytoplasmic globules attached to the inner side of cell walls in the middle cortex, and mainly in the matrix filling the intercellular spaces of the middle and inner cortex. This main site of localization of MAC236 may indicate a role in the functioning of the oxygen diffusion barrier.  相似文献   

5.
The oxygen diffusion resistance of Lupinus albus (L.) cv. Multoluparoot nodules was increased by subjection to short-term stresses;lowering rhizosphere temperature from 25 to 16 °C (2 h),detopping plants (3 h), darkening plants (21 h) or exposingroots to 20 mol m–3 KN03 for 2, 4 or 6 d. Microscopicobservations and measurements showed that this resulted in thearea of open intercellular spaces within the inner cortex beingreduced due to both cell expansion and increased productionof an occluding glycoprotein. Electrophoretic and Western Blotanalysis using the monoclonal antibodies MAC236 and MAC265 showedtwo distinct glycoprotein antigens with molecular weights of240 and 135 kDa, respectively. Both antigens are localized withinintercellular spaces of the inner cortex. The amount of glycoproteinwas determined using either ELISA, with MAC265, or quantificationof immunolabelling with MAC236. This immunolabelling also localizedthe glycoprotein within globules adhering to the inside of theinner cortical cell walls. Key words: Oxygen diffusion resistance, glycoprotein, nodules, nitrogen fixation, Lupinus albus  相似文献   

6.
Soybean (Glycine max L. Merr) cv. Clarke plants inoculated withBradyrhizobium japonicum strain RCR3407 were grown either ina greenhouse with a low irradiance (200–400)µmolm–2 s–1) or in a controlled-environment growth cabinetwith a higher irradiance (600 µimol m–2 s–1).At 42 d plants were given a nitrogen-free nutrient solutioncontaining 50 mol m–3 sodium chloride for 2 weeks andthen allowed to recover from salt-stress for a further 2 weeks. Salt treatment reduced plant growth by at least half in bothgrowth regimes, however, the controlled environment-grown (CEG)plants were five times larger than the greenhouse-grown (GG)plants in terms of dry weight and number/weight of nodules perplant, regardless of treatment. The structure of nodules, from both growth regimes, harvestedat the end of the 2 week salt-stress was similar to unstressedcontrol nodules. However, nodules harvested 1 week later fromboth CEG and GG plants had structural changes including degradationof bacteria in vacuoles around host cell nuclei, particularlyin the outer cell layers of the infected tissue. In addition,meristematic activity was seen in the cortex of some nodulesfrom GG plants. Young cells here contained infection threadsand newly-released bacteria. Nodules harvested 2 weeks after removal of the salt-stress fromCEG plants showed an apparent recovery from the stress. However,there was a very marked increase in the amount of starch inthe cortex which was not seen in equivalent GG nodules. In contrast,nodules from GG plants contained many vacuolate infected cellsand, consequently, a lowered bacteroid population. Further,meristematic activity was seen in a zone concentric to the infectedzone, newly-formed cells contained many large infection threadsand were interspersed with intercellular bacteria. The meristematicactivity increased the relative volume of cortical to infectedcells in these nodules. Growth conditions did not affect control nodule specific nitrogenaseactivity or oxygen diffusion resistance (R) and these parameterswere also not altered in CEG nodules exposed to salt plus the14 d recovery period. However, nitrogenase activity was greatlyreduced, and R increased by more than eight times in equivalentGG nodules exposed to salt plus recovery. It is hypothesized that the gross morphological changes werean attempt to counter salt toxicity and/or oxygen damage underconditions of reduced photosynthate supply to the nodules dueto the poor light levels in the greenhouse. However, soybeannodules supplied with adequate photosynthate were able to withstandand recover from long-term salt-stress with little alterationto their structural integrity. Key words: Soybean, sodium chloride, nitrogen fixation, light intensity, oxygen diffusion resistance  相似文献   

7.
The developmental profile of ‘constitutive’ nitratereductase activity (cNRA) in leaves of soybean (Glycine max(L.) cv. Bragg) plants at different ages is described. The youngestleaves had most cNRA and the activity dropped off as a newerleaf developed above it. Each leaf had its distinct active periodof in vivo cNRA. This pattern was different in urea-grown andsymbiotically-grown plants (inoculated with Bradyrhizobium japonicumstrain USDA 110), where the latter had no detectable in vivocNRA in older leaves. Urea-grown plants maintained considerablein vivo NRA in such older leaves. When symbiotically-grown plantshad their nodules removed, in vivo cNRA reappeared in olderleaves within 1 d of removal, nearly reaching levels of youngleaves at 3 d after nodule excision. Allantoic acid (ALL), oneof the known transport ureides of soybeans, was implicated asa possible signal molecule from nodules to leaves. Allantoicacid (100 µM) inhibited in vitro c1 NRA significantly,with 400 µM ALL resulting in complete inhibition. In contrast,allantoin (ALN) had no inhibitive effect on NRA. Inhibitionof c1NRA by ALL was by a competitive process, judging from Lineweaver-Burkeplots against nitrate. Kinetics showed a constant Vmax of around105 nmol NO2 mg–1 protein h–1 and a Km for nitrateof 15 mM, which increased to 60 mM in the presence of 200 µMallantoic acid. Non-specific (ionic and pH-related) influenceswere eliminated. Allantoic acid also had a slight stimulatingeffect of in vitro NRA (up about 25% at 400 µM). Thesefindings suggest that c1NRA may be involved in ureide metabolism,rather than in vivo nitrate metabolism. Key words: Root-shoot interaction, nitrogen metabolism, nodulation, symbiosis  相似文献   

8.
《Annals of botany》1997,79(5):493-503
The development of the N2-fixing symbiosis between white lupin (Lupinus albusL.) cv. Multolupa andBradyrhizobiumstrain ISLU16 was followed using the acetylene reduction assay (ARA), immunoblots of protein extracts, and microscopy/immunogold labelling at 0, 8, 12, 17 and 20 d after infection. There was no ARA at 0, 8 and 12 d, although macroscopically visible nodule primordia had formed on roots by 8 d. The lack of nitrogenase at these times was confirmed by a negative signal to immunogold labelling with nitrogenase-specific antibodies. At 17 d three out of six plants had ARA, and nodules from these gave a positive signal with the nitrogenase antibody. By contrast, ARA(fix) nodules at 17 d were smaller (mean radius of 0.49 mm compared to 1.01 mm with fix+nodules) and gave a negative signal with the nitrogenase antibody. Western blots of nodule protein extracts using the monoclonal antibodies MAC236 and MAC265 (which recognize two epitopes on a glycoprotein which is considered to be involved in both rhizobial infection and the regulation of nodule oxygen diffusion) gave a strong signal with nodules (fix+) from 20 d plants and with 17 d fix+plants. The signal with MAC236/MAC265 was substantially weaker with nodules from 17 d fixplants, and there was no signal apparent from nodules/nodulated roots from the 0, 8 and 12 d harvests. However, further investigation using immunogold labelling revealed that not only were MAC236 and MAC265 expressed within cortical intercellular spaces in 20 d and 17 d fix+/fixnodules, but they were also strongly expressed in the developing cortex surrounding the newly-infected tissue in 8 d nodules, as well as in intercellular spaces within the cortex and infected tissue of 12 d nodules. These data demonstrate that the glycoprotein recognized by MAC236 and MAC265 is present before the onset of nitrogenase expression and function, but expression of the epitopes appears to be enhanced from the onset of N2fixation. Nodules at all harvests were investigated for the presence of infection threads, as the MAC236/MAC265-recognized glycoprotein is also a component of the infection thread matrix in nodules from other legumes. Infection threads were not seen in nodules from any of the harvests except for the 20 d nodules, and then only after serial sectioning. The latter revealed occasional short wide infection threads entering and releasing rhizobia into small pockets of uninfected cells, within the infected tissue, but not within the meristems. The matrix of these infection threads labelled weakly, or not at all, with MAC236 and MAC265, and it was concluded that the majority of the MAC236/MAC265 detected in lupin nodule extracts originated from glycoprotein within cortical intercellular spaces.  相似文献   

9.
This paper describes the construction and operation of H2 specificmicroelectrodes and their application to measurements of H2concentrations, H2 gradients and H2 inhibition of N2-fixationin legume root nodules. Electrode construction was similar to that of O2 specific microelectrodespreviously reported. They comprise an outer casing drawn toa 2–20 µm tip plugged with silicone rubber and aconcentric inner electrode made from glass coated platinum wire.The exposed tip of the Pt wire was placed close to the siliconeplug and polarized positively at 0?4 V with respect to an internalAg reference electrode. With an internal electrolyte of KC1/HC1current flow through the electrode was proportional to H2 concentrationand independent of CO2 and O2. With appropriate amplificationand screening the detection limit for this system was 0?0001atm H2 (4?0 µmol m–3). Within newly detached nodulesof Hup–ve symbioses of soyabean, pea and clover H2 concentrationvaried from 0?009 to 0?014atm compared with 0?021 atm in lupinnodules. In nodules formed by the Hup–ve soyabean/RCR3442symbiosis internal pH2 increased from 0?012 atm to 0?09 atmwhen external pO2 was raised to 0?60 atm. Hydrogen could notbe detected within nodules of the Hup+ve Clarke/RCR3407 symbiosiseven when N2 in the gas phase was replaced with Ar and externalpO2 was increased to 0?60 atm. An assessment of H2 inhibition of nitrogen fixation in the soyabean(Clarke/RCR3442) symbioses involved measurements of H2 productionat increasing internal H2 levels, induced by stepped increasesin gas phase H2 concentration. The initial relative efficiencyof 0?66 (calculated from the pH2 of nodules exposed to air andAr/O2 mixtures) started to decrease at an internal pH2 of 0?02to 0?03 atm and fell by 80% to 0?18 at an internal pH2 of 0?1atm. This threshold value for inhibition is above the measuredmean H2 concentration for this symbiosis of 0?01 atm. Hydrogen gradients through the nodule showed a sharp increasein the region of the inner cortex, which was reciprocal to adecrease in O2 concentration, and a shallow gradient throughthe infected zone. These results indicate that the inner airspaces in the nodule are interconnected and confirm that thebarrier to O2 diffusion is located in the inner cortex. Key words: Root nodules, hydrogen, hydrogenase, oxygen  相似文献   

10.
A structural analysis was conducted to determine whether glycoprotein‐containing intercellular space occlusions are involved in medium‐term regulation of O2 diffusion in soybean (Glycine max) nodules. Alterations in O2 diffusion were induced by a 3 h detopping treatment, and glycoprotein was immunolocalized with the monoclonal antibodies MAC236 and MAC265. Western blots of unstressed nodules revealed that these antibodies recognize antigens with two different molecular weights in soybean nodules. Tissue printing of halved nodules showed that both antigens were present in fresh nodules from control and 3 h detopped plants. The main localization appeared to be the inner cortex, but some immunolabelling also occurred in the infected region. ELISAs demonstrated a significant increase in total nodule concentration of intercellular glycoprotein following detopping, and cryosections of fresh nodules from this treatment also showed localization of antigens within the intercellular spaces of the infected region. The production of intercellular space occlusions in both the mid‐cortex and infected regions after 3 h detopping was confirmed by light microscopy and silver‐enhanced immunolabelling; cortical changes were quantified by image analysis techniques. Electron microscopy revealed that the occlusions within the infected region were less dense and less heavily labelled than those in the cortex. These results are discussed in relation to O2 diffusion regulation in soybean nodules  相似文献   

11.
Nodulated white lupins (Lupinus albus L. cv. Multolupa) weresubject to either darkening for 12 h, followed by 24 h recoveryin light, or to 50% O2 for 30 min. For each treatment, noduleswere harvested at intervals for analysis by light and electronmicroscopy and determination of glycoprotein content using EnzymeLinked Immunosorbent Assays (ELISA). This allowed for an analysisof the sequence of events causing an increase in intercellularspace occlusion within the inner cortex. The temporal sequencein response to darkening appears to be: (1) an initial rapidincrease in the detectable levels of intracellular glycoprotein,due to either a state change or de novo synthesis, (2) a concomitantincrease in the volume of thickened cell walls, causing a reductionof intercellular space volume and (3) after 1–3 h a releaseof glycoprotein into the intercellular space network of theinner cortex, accompanied (and possibly spread) by the continuedconstriction of the spaces due to cell wall and cell contentexpansion. The results for exposure to 50% O2 showed a similar,but much more rapid, sequence of events, operating within 15–30min. The main difference between the two sequences was the lackof expansion of thickened cell walls with increased pO2. Also,it was possible to detect glycoprotein within cell walls followingexposure to 50% O2 but not following darkening. These observationsare discussed in relation to proposed mechanisms for the operationof a variable oxygen diffusion barrier in legume nodules. Key words: Oxygen diffusion resistance, glycoprotein, nodules, Lupinus albus  相似文献   

12.
Soluble proteins extracted from the roots of nodulating soybean[Glycine max (L.) Merr. cv. T202] and from roots of the non-nodulatingisoline rj1 of cv. T202 (cv. T201), which had been inoculatedwith Bradyrhizobium japonicum, were analyzed by two-dimensionalpolyacrylamide gel electrophoresis and silver staining, in anattempt to identify polypeptides involved in early stages ofnodulation. Almost identical patterns of polypeptides were generatedby extracts of 3-day-old roots of uninoculated T201 and T202and of inoculated T201 and T202, but a unique spot, correspondingto a polypeptide of 38 kDa was detected in the case of inoculatedroots of T202. Western blotting analysis using "inoculated-T202-rootspecific" antiserum, prepared by titration of antiserum againstproteins from inoculated T202 roots with proteins from inoculatedT201 roots, revealed spots corresponding to polypeptides of26,27, and 33 kDa that were detectable only in the extractsof roots of inoculated T202. However, no unique polypeptidespots were detected in the case of roots of inoculated T201and T202, as compared with those from uninoculated T201 andT202 roots by Western blotting analysis using "inoculated-T201-rootspecific" antiserum prepared by titration of antiserum againstproteins from inoculated T201 roots with proteins from uninoculatedT201 roots. (Received May 27, 1991; Accepted September 30, 1991)  相似文献   

13.
Short-term effects of water deficit on nitrogenase activitywere investigated with hydroponically grown soybean plants (Glycinemax L. Merr. cv. Biloxi) by adding polyethylene glycol (PEG)to the hydroponic solution and measuring nitrogenase activity,nodule respiration, and permeability to oxygen diffusion (Po).These experiments showed a rapid decrease in acetylene reductionactivity (ARA) and nodule respiration. A consequence of thedecreased respiration rate was that Po calculated by Fick'sLaw also decreased. However, these results following PEG treatmentwere in direct conflict with a previous report of stabilityin Po determined by using an alternative technique. To resolvethis conflict, an hypothesis describing a sequence of responsesto the initial PEG treatment is presented. An important findingof this study was that the response to water deficit inducedby PEG occurred in two stages. The first stage of decreasednodule activity was O2-limited and could be reversed by exposingthe nodules to elevated pO2. The second stage which developedafter 24 h of exposure to PEG resulted in substantial loss innodule activity and this activity could not be recovered withincreased pO2. Severe water deficit treatments disrupt noduleactivity to such a degree that O2 is no longer the major limitation. Key words: Glycine max, N2 fixation, soybean, oxygen permeability, water deficit  相似文献   

14.
The microscopic events leading to nodulation in normally nodulatingsoybean [Glycine max (L.) Merr.] genotypes, and the effectsof Bradyrhizobium strain and inoculum dose on nodulation, wereexamined in the NN5 non-nodulating mutant derived from cv. Williams.The NN5 mutant possesses the recessive genes rj5 and ,rj6. BradyrhizoblumJaponicum strain USDA 110 cells attached normally to the rootsurface of NN5, many in a polar manner as in its wild-type parent,but failed to induce root hair curling and sub-epidermal celldivision in the root. Co-culturing NN5 and Williams did notmodify nodulation of either genotype. Hydroponically-grown NN5seedlings did not nodulate at a high inoculum dose (1 x 1010cells seedling–1) of any B. japonicum strain tested (USDA110, USDA 26, USDA 136, and the tryptophan metabolic variantsB-14075 and ta 11 Nod+). A higher inoculum dose of 3 x 10 USDA136 cells seedling also failed to induce nodulation in NN5 andnod139 (a non-nodulating mutant of cv. Bragg). The lack of nodulationof NN5 at any inoculum dose is contrary to previous observationsof sparse nodulation of other non-nodulating mutants at highinoculum dose. Genetic control of non-nodulation in NN5 is probablysimilar to nodl39. Key words: Nodulation events, non-nodulating mutant, soybean  相似文献   

15.
Plants of white lupin (Lupinus albus L cv Multolupa) and soyabean(Glycine max L cv Clarke) were grown in controlled-environmentcabinets, subjected to various stresses and their nodular nitrogenaseactivity and total root respiration measured When these measurementswere used to calculate nodular oxygen diffusion resistance,using a simplified equation for Fick's first law of diffusion,it was found that the apparent resistance of stressed nodulesincreased anomalously with decreases in external oxygen concentrationA new analysis procedure is proposed to alleviate this anomalyThis procedure also uses the simplified Fick's law equationbut includes a respiratory contribution to the total oxygenflux across the diffusion barrier which is not coupled to nitrogenaseactivity Also, resistance is modelled as an exponential functionof external oxygen concentration Use of this analysis procedureproduces realistic values for total resistance and providesa characterisation of this resistance into a minimum value andan adjustment factor for changes in external oxygen It is postulatedthat the additional respiration component represents the activityof nodule cortex cells involved in the diffusion barrier, particularlythat of vascular bundles Oxygen diffusion resistance, nodule, nitrogen fixation, respiration  相似文献   

16.
Twenty recently obtained field isolates of Bradyrhizobium japonicum serogroup 123 were tested for their nodule mass production on the standard commercial soybean (Glycine max (L.) Merr. cv. Williams) and on two soybean plant introduction (PI) genotypes previously determined to restrict nodulation by strain USDA 123. Four of the field isolates showed similar restricted nodulation on the two genotypes, while all 20 isolates produced a normal amount of nodules on G. max cv. Williams. Serological analyses with adsorbed fluorescent antibodies showed that members of the 123 serotype ranked low in nodulation of the two PIs, in contrast to members of serotypes 127 and 129. Competition studies on the PIs indicated that isolates which were restricted were not competitive for nodule occupancy against strain USDA 110. However, unrestricted isolates of serogroup 123 were very competitive against USDA 110. On G. max cv. Williams, all serogroup 123 isolates tested were very competitive against USDA 110.  相似文献   

17.
Flavins in different compartments of effective nodules fromGlycine max cv Maple Arrow xBradyrhizobium japonicum strains were studied by spectrophotometry and chromatographic techniques. Flavins in the peribacteroid space were riboflavin (80%) and FMN (20%), as identified by TLC and HPLC. Flavin concentrations in the soybean root nodule cytoplasm, in the symbiosome space (PBS) and in the cytosol of bacteroids were monitored between 20 and 40 days post infection (d.p.i.) Between the 20th and 29th d.p.i. an at least four times higher flavin/protein ratio was found in PBS of effective nodules compared with the nodule cytoplasm. Between nitrogenase activity in the free-living state and bacterial flavin accumulation, no correlation could be observed. Flavin accumulation is not restricted to an effective symbiosis, as indicated by the analysis of ineffective nodules with strainB. japonicum RH-31 Marburg. Flavin accumulation is absent in uninfected soybean root tissue and in free-living rhizobia, thus indicating that flavin accumulation is a result of symbiotic interaction. Flavin accumulation is also missing in nodules with a hypersensitive response against the bacteria.  相似文献   

18.
The infection of Vigna subterranea (formerly Voandzeia subterranea) by Bradyrhizobium strain MAO 113 (isolated from V. subterranea) was examined by light and transmission electron microscopy. Bacteria accumulated on the epidermis close to root hairs, and subsequently entered the latter via infection threads. Most of the steps involved in nodule formation were generally characteristic of determinate nodules, such as those which form on the closely related V. radiata. For example, nodule meristems were induced beneath the root epidermis adjacent to infected root hairs, but prior to infection of the meristem by rhizobia. Moreover, after the infection of some of the meristematic cells by the infection threads, and the release of the rhizobia into membrane-bound vesicles, the infection process ceased and dissemination of the rhizobia was by division of already-infected host cells. However, there were some aspects of this process in V. subterranea which have been more commonly described in indeterminate nodules. These include long infection threads entering a number of cells within the meristems simultaneously and a matrix within infection threads which was strongly labelled with immunogold monoclonal antibodies, MAC236 and MAC265, which recognize epitopes on an intercellular glycoprotein. The MAC236 and MAC265 antibodies also recognized material in the unwalled infection droplets surrounding bacteria which were newly-released from the infection threads. The amount of labelling shown was more characteristic of the long infection threads seen in indeterminate nodules such as pea (Pisum sativum) and Neptunia plena. The structure of mature V. subterranea nodules was similar to that described for other determinate nodules such as Glycine max, Vigna unguiculata and V.radiata, i.e. they were spherical and the infected zone consisted of both infected and uninfected cells. Surrounding the infected tissue was an inner cortex of uninfected cell layers containing the putative components of an oxygen diffusion barrier (including glycoprotein-occluded intercellular spaces), and an outer cortex with cells containing calcium oxalate crystals.  相似文献   

19.
The infection of Vigna subterranea (formerly Voandzeia subterranea) by Bradyrhizobium strain MAO 113 (isolated from V. subterranea) was examined by light and transmission electron microscopy. Bacteria accumulated on the epidermis close to root hairs, and subsequently entered the latter via infection threads. Most of the steps involved in nodule formation were generally characteristic of determinate nodules, such as those which form on the closely related V. radiata. For example, nodule meristems were induced beneath the root epidermis adjacent to infected root hairs, but prior to infection of the meristem by rhizobia. Moreover, after the infection of some of the meristematic cells by the infection threads, and the release of the rhizobia into membrane-bound vesicles, the infection process ceased and dissemination of the rhizobia was by division of already-infected host cells. However, there were some aspects of this process in V. subterranea which have been more commonly described in indeterminate nodules. These include long infection threads entering a number of cells within the meristems simultaneously and a matrix within infection threads which was strongly labelled with immunogold monoclonal antibodies, MAC236 and MAC265, which recognize epitopes on an intercellular glycoprotein. The MAC236 and MAC265 antibodies also recognized material in the unwalled infection droplets surrounding bacteria which were newly-released from the infection threads. The amount of labelling shown was more characteristic of the long infection threads seen in indeterminate nodules such as pea (Pisum sativum) and Neptunia plena. The structure of mature V. subterranea nodules was similar to that described for other determinate nodules such as Glycine max, Vigna unguiculata and V.radiata, i.e. they were spherical and the infected zone consisted of both infected and uninfected cells. Surrounding the infected tissue was an inner cortex of uninfected cell layers containing the putative components of an oxygen diffusion barrier (including glycoprotein-occluded intercellular spaces), and an outer cortex with cells containing calcium oxalate crystals.  相似文献   

20.
The compound X, which had previously been found to be accumulatedin the soybean nodules formed by infection with wild-type H2-uptakenegative Bradyrhizobium japonicum strains, was identified asserinol (2-amino-1,3-propanediol) by means of elementary analysis,infrared spectrometry, 1H-nuclear magnetic resonance, 13C-nuclearmagnetic resonance, high-performance liquid chromatography andgas chromatography/mass spectrometry. During the process ofpurification of compound X, it was also elucidated that 3-amino-1,2-propanediolwas present in the soybean nodules as a minor component. (Received January 6, 1986; Accepted June 16, 1986)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号