首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1), like other lentiviruses, can infect non-dividing cells. The lentiviruses are most likely to have evolved a nuclear import strategy to import HIV-1 cDNA and viral protein complex through the nuclear pore complex (NPC) formed by nucleoporin proteins (Nup). In this study, we found that synthesis of integrated and 2LTR but not full-length form of HIV-1 cDNA was clearly impaired in culture via transduction of vesicular stomatitis virus matrix protein (VSV M), an inhibitor protein, through binding to the phenylalanine-glycine (FG) repeat region of Nup98. The impairment of synthesis of integrated and 2LTR DNA with VSV M was restored by ectopic overexpression of Nup98. A series of experiments using Nup98-depleted NPC by the small interfering RNA (siRNA) technique showed specific impairment of NPC structure and some functions, including nuclear import of HIV-1 cDNA. Our results suggest that Nup98 on the NPC specifically participates in the nuclear entry of HIV-1 cDNA following HIV-1 entry.  相似文献   

2.
3.
4.
Vesicular stomatitis virus (VSV) infects and kills a wide range of cell types; however, the mechanisms involved in VSV‐mediated cell death are not fully understood. Here we show that VSV infection interferes with mitotic progression, resulting in cell death. This effect requires the interaction of VSV matrix (M) protein with the Rae1–Nup98 complex in mitosis, which is associated with a subset of ribonucleoproteins (RNPs). VSV displaced Rae1 from spindle poles, caused spindle abnormalities and triggered substantial cell death during metaphase. These effects were attenuated in cells infected with VSV expressing a mutant M protein that does not bind efficiently to the Rae1–Nup98–RNP complex. In cells that progressed to late mitosis, M protein prevented proper nuclear formation and chromatin decondensation. VSV is an oncolytic (anti‐tumour) agent as it preferentially replicates and kills tumour cells. As tumour cells have a high mitotic index, VSV‐mediated mitotic cell death probably contributes to its oncolytic activity.  相似文献   

5.
Karyopherin beta2 (Kapbeta2, transportin) binds the M9 sequence of human ribonucleoprotein A1 and mediates its nuclear import. Here we show a role for the nucleoporin Nup98 in the disassembly of Kapbeta2 import complexes at the nuclear side of the nuclear pore complex (NPC). Kapbeta2 bound to a region at the N terminus of Nup98 that contains an M9-like sequence. The human ribonucleoprotein A1 M9 sequence competed with Nup98 for binding to Kapbeta2, indicating that Nup98 can dissociate Kapbeta2 from its substrate. Binding of Kapbeta2 to Nup98 was inhibited by Ran loaded with guanylyl imidophosphate, suggesting that RanGTP dissociates Kapbeta2 from Nup98. RanGTP is produced from RanGDP through nucleotide exchange mediated by RanGEF (RCC1). Immunoelectron microscopy and nucleotide exchange assays revealed functional RanGEF on both sides of the NPC. On the nuclear side, the localization of RanGEF coincided with that of Nup98. RanGEF bound to Nup98 at a region adjacent to the Kapbeta2-binding site. These findings suggest a model where 1) import substrate is released from Kapbeta2 at the nucleoplasmic side of the NPC by competition with the Nup98 M9-like site, 2) Nup98-bound RanGEF catalyzes the formation of RanGTP, and 3) RanGTP dissociates Kapbeta2 from Nup98 allowing repeated cycles of import.  相似文献   

6.
Disassembly of nuclear pore complexes (NPCs) is a decisive event during mitotic entry in cells undergoing open mitosis, yet the molecular mechanisms underlying NPC disassembly are unknown. Using chemical inhibition and depletion experiments we show that NPC disassembly is a phosphorylation-driven process, dependent on CDK1 activity and supported by members of the NIMA-related kinase (Nek) family. We identify phosphorylation of the GLFG-repeat nucleoporin Nup98 as an important step in mitotic NPC disassembly. Mitotic hyperphosphorylation of Nup98 is accomplished by multiple kinases, including CDK1 and Neks. Nuclei carrying a phosphodeficient mutant of Nup98 undergo nuclear envelope breakdown slowly, such that both the dissociation of Nup98 from NPCs and the permeabilization of the nuclear envelope are delayed. Together, our data provide evidence for a phosphorylation-dependent mechanism underlying disintegration of NPCs during prophase. Moreover, we identify mitotic phosphorylation of Nup98 as a rate-limiting step in mitotic NPC disassembly.  相似文献   

7.
Nup159p/Rat7p is an essential FG repeat–containing nucleoporin localized at the cytoplasmic face of the nuclear pore complex (NPC) and involved in poly(A)+ RNA export and NPC distribution. A detailed structural–functional analysis of this nucleoporin previously demonstrated that Nup159p is anchored within the NPC through its essential carboxyl-terminal domain. In this study, we demonstrate that Nup159p specifically interacts through this domain with both Nsp1p and Nup82p. Further analysis of the interactions within the Nup159p/Nsp1p/Nup82p subcomplex using the nup82Δ108 mutant strain revealed that a deletion within the carboxyl-terminal domain of Nup82p prevents its interaction with Nsp1p but does not affect the interaction between Nup159p and Nsp1p. Moreover, immunofluorescence analysis demonstrated that Nup159p is delocalized from the NPC in nup82Δ108 cells grown at 37°C, a temperature at which the Nup82Δ108p mutant protein becomes degraded. This suggests that Nup82p may act as a docking site for a core complex composed of the repeat-containing nucleoporins Nup159p and Nsp1p. In vivo transport assays further revealed that nup82Δ108 and nup159-1/rat7-1 mutant strains have little if any defect in nuclear protein import and protein export. Together our data suggest that the poly(A)+ RNA export defect previously observed in nup82 mutant cells might be due to the loss from the NPCs of the repeat-containing nucleoporin Nup159p.  相似文献   

8.
The herpes simplex virus ICP27 protein is important for the expression and nuclear export of viral mRNAs. Although several binding sites have been mapped along the ICP27 sequence for various RNA and protein partners, including the transport receptor TAP of the host cell nuclear transport machinery, several aspects of ICP27 trafficking through the nuclear pore complex remain unclear. We investigated if ICP27 could interact directly with the nuclear pore complex itself, finding that ICP27 directly binds the core nucleoporin Nup62. This is confirmed through co-immunoprecipitation and in vitro binding assays with purified components. Mapping with ICP27 deletion and point mutants further shows that the interaction requires sequences in both the N and C termini of ICP27. Expression of wild type ICP27 protein inhibited both classical, importin α/β-dependent and transportin-dependent nuclear import. In contrast, an ICP27 point mutant that does not interact with Nup62 had no such inhibitory effect. We suggest that ICP27 association with Nup62 provides additional binding sites at the nuclear pore for ICP27 shuttling, thus supporting ICP27-mediated transport. We propose that ICP27 competes with some host cell transport receptors for binding, resulting in inhibition of those host transport pathways.  相似文献   

9.
We report that the fission yeast nucleoporin Nup124p is required for the nuclear import of both, retrotransposon Tf1-Gag as well as the retroviral HIV-1 Vpr. Failure to import Tf1-Gag into the nucleus in a nup124 null mutant resulted in complete loss of Tf1 transposition. Similarly, nuclear import of HIV-1 Vpr was impaired in nup124 null mutant strains and cells became resistant to Vpr's cell-killing activity. On the basis of protein domain similarity, the human nucleoporin Nup153 was identified as a putative homolog of Nup124p. We demonstrate that in vitro-translated Nup124p and Nup153 coimmunoprecipitate Tf1-Gag or HIV-1 Vpr. Though full-length Nup153 was unable to complement the Tf1 transposition defect in a nup124 null mutant, we provide evidence that both nucleoporins share a unique N-terminal domain, Nup124p(AA264-454) and Nup153(AA448-634) that is absolutely essential for Tf1 transposition. Epigenetic overexpression of this domain in a wild-type (nup124(+)) background blocked Tf1 activity implying that sequences from Nup124p and the human Nup153 challenged the same pathway affecting Tf1 transposition. Our results establish a unique relationship between two analogous nucleoporins Nup124p and Nup153 wherein the function of a common domain in retrotransposition is conserved.  相似文献   

10.
11.
12.
A Segref  K Sharma  V Doye  A Hellwig  J Huber  R Lührmann    E Hurt 《The EMBO journal》1997,16(11):3256-3271
An essential cellular factor for nuclear mRNA export called Mex67p which has homologous proteins in human and Caenorhabditis elegans was identified through its genetic interaction with nucleoporin Nup85p. In the thermosensitive mex67-5 mutant, poly(A)+ RNA accumulates in intranuclear foci shortly after shift to the restrictive temperature, but NLS-mediated nuclear protein import is not inhibited. In vivo, Mex67p tagged with green fluorescent protein (GFP) is found at the nuclear pores, but mutant mex67-5-GFP accumulates in the cytoplasm. Upon purification of poly(A)+ RNA derived from of UV-irradiated yeast cells, Mex67p, but not nucleoporins Nup85p and Nup57p, was crosslinked to mRNA. In a two-hybrid screen, a putative RNA-binding protein with RNP consensus motifs was found to interact with the Mex67p carboxy-terminal domain. Thus, Mex67p is likely to participate directly in the export of mRNA from the nucleus to the cytoplasm.  相似文献   

13.
V. Doye  R. Wepf    E. C. Hurt 《The EMBO journal》1994,13(24):6062-6075
Temperature-sensitive nucleoporin nup49-316 mutant cells accumulate poly(A)+ RNA inside the nucleus when shifted to restrictive temperature. We performed a synthetic lethal screen with this mutant allele to identify further components of the mRNA export machinery. A synthetic lethal mutant slv21 was isolated, which exhibited a ts phenotype and showed nuclear accumulation of poly(A)+ RNA at 37 degrees C. The wild-type gene complementing slv21 was cloned and sequenced. It encodes a novel protein Nup133p which is located at the nuclear pore complex. NUP133 is not an essential gene, but cells in which NUP133 is disrupted grow slowly at permissive temperatures and stop growing at 37 degrees C. Concomitant with the growth inhibition, nup133- cells accumulate poly(A)+ RNA inside the nucleus whereas nuclear import of a karyophilic reporter protein is not altered. Strikingly, nup133- cells display extensive clustering of nuclear pore complexes at a few sites on the nuclear envelope. However, the nuclear pore clustering phenotype and intranuclear accumulation of poly(A)+ RNA are not obligatorily linked, since an amino-terminally truncated Nup133p allows normal poly(A)+ RNA export, but does not complement the clustering phenotype of nup133- cells.  相似文献   

14.
Nup98 is a mobile nucleoporin that forms distinct dots in the nucleus, and, although a role for Nup98 in nuclear transport has been suggested, its precise function remains unclear. Here, we show that Nup98 plays an important role in Crm1-mediated nuclear protein export. Nuclear, but not cytoplasmic, dots of EGFP-tagged Nup98 disappeared rapidly after cell treatment with leptomycin B, a specific inhibitor of the nuclear export receptor, Crm1. Mutational analysis demonstrated that Nup98 physically and functionally interacts with Crm1 in a RanGTP-dependent manner through its N-terminal phenylalanine-glycine (FG) repeat region. Moreover, the activity of the Nup98-Crm1 complex was modulated by RanBP3, a known cofactor for Crm1-mediated nuclear export. Finally, cytoplasmic microinjection of anti-Nup98 inhibited the Crm1-dependent nuclear export of proteins, concomitant with the accumulation of anti-Nup98 in the nucleus. These results clearly demonstrate that Nup98 functions as a novel shuttling cofactor for Crm1-mediated nuclear export in conjunction with RanBP3.  相似文献   

15.
RAT7/NUP159 was identified previously in a screen for genes whose products are important for nucleocytoplasmic export of poly(A)+ RNA and encodes an essential nucleoporin. We report here the identification of RSS1 (Rat Seven Suppressor) as a high-copy extragenic suppressor of the rat7-1 temperature-sensitive allele. Rss1p encodes a novel essential protein of 538 amino acids, which contains an extended predicted coiled-coil domain and is located both at nuclear pore complexes (NPCs) and in the cytoplasm. RSS1 is the first reported high-copy extragenic suppressor of a mutant nucleoporin. Overexpression of Rss1p partially suppresses the defects in nucleocytoplasmic export of poly(A)+ RNA, rRNA synthesis and processing, and nucleolar morphology seen in rat7-1 cells shifted to the nonpermissive temperature of 37 degrees C and, thus, restores these processes to levels adequate for growth at a rate approximately one-half that of wild-type cells. After a shift to 37 degrees C, the mutant Rat7-1p/Nup159-1p is lost from the nuclear rim of rat7-1 cells and NPCs, which are clustered together in these cells grown under permissive conditions become substantially less clustered. Overexpression of Rss1p did not result in retention of the mutant Rat7-1p/Nup159-1p in NPCs, but it did result in partial maintenance of the NPC-clustering phenotype seen in mutant cells. Depletion of Rss1p by placing the RSS1 open reading frame (ORF) under control of the GAL1 promoter led to cessation of growth and nuclear accumulation of poly(A)+ RNA without affecting nuclear protein import or nuclear pore complex distribution, suggesting that RSS1 is directly involved in mRNA export. Because both rat7-1 cells and cells depleted for Rss1p are defective in mRNA export, our data are consistent with both gene products playing essential roles in the process of mRNA export and suggest that Rss1p overexpression suppresses the growth defect of rat7-1 cells at 37 degrees C by acting to maintain mRNA export.  相似文献   

16.
The mammalian nuclear pore complex (NPC) is comprised of approximately 50 unique proteins, collectively known as nucleoporins. Through fractionation of rat liver nuclei, we have isolated >30 potentially novel nucleoporins and have begun a systematic characterization of these proteins. Here, we present the characterization of Nup96, a novel nucleoporin with a predicted molecular mass of 96 kD. Nup96 is generated through an unusual biogenesis pathway that involves synthesis of a 186-kD precursor protein. Proteolytic cleavage of the precursor yields two nucleoporins: Nup98, a previously characterized GLFG-repeat containing nucleoporin, and Nup96. Mutational and functional analyses demonstrate that both the Nup98-Nup96 precursor and the previously characterized Nup98 (synthesized independently from an alternatively spliced mRNA) are proteolytically cleaved in vivo. This biogenesis pathway for Nup98 and Nup96 is evolutionarily conserved, as the putative Saccharomyces cerevisiae homologues, N-Nup145p and C-Nup145p, are also produced through proteolytic cleavage of a precursor protein. Using immunoelectron microscopy, Nup96 was localized to the nucleoplasmic side of the NPC, at or near the nucleoplasmic basket. The correct targeting of both Nup96 and Nup98 to the nucleoplasmic side of the NPC was found to be dependent on proteolytic cleavage, suggesting that the cleavage process may regulate NPC assembly. Finally, by biochemical fractionation, a complex containing Nup96, Nup107, and at least two Sec13- related proteins was identified, revealing that a major sub-complex of the NPC is conserved between yeast and mammals.  相似文献   

17.
Nup98 is a glycine-leucine-phenylalanine-glycine (GLFG) repeat–containing nucleoporin that, in addition to nuclear transport, contributes to multiple aspects of gene regulation. Previous studies revealed its dynamic localization within intranuclear structures known as GLFG bodies. Here we show that the mammalian Nup107-160 complex (Y-complex), a major scaffold module of the nuclear pore, together with its partner Elys, colocalizes with Nup98 in GLFG bodies. The frequency and size of GLFG bodies vary among HeLa sublines, and we find that an increased level of Nup98 is associated with the presence of bodies. Recruitment of the Y-complex and Elys into GLFG bodies requires the C-terminal domain of Nup98. During cell division, Y-Nup–containing GLFG bodies are disassembled in mitotic prophase, significantly ahead of nuclear pore disassembly. FRAP studies revealed that, unlike at nuclear pores, the Y-complex shuttles into and out of GLFG bodies. Finally, we show that within the nucleoplasm, a fraction of Nup107, a key component of the Y-complex, displays reduced mobility, suggesting interaction with other nuclear components. Together our data uncover a previously neglected intranuclear pool of the Y-complex that may underscore a yet-uncharacterized function of these nucleoporins inside the nucleus, even in cells that contain no detectable GLFG bodies.  相似文献   

18.
The vertebrate nucleoporin Nup98 can be expressed in two distinct forms from differentially spliced mRNAs, either as a 98-kDa protein or as the 195-kDa Nup98/Nup96 polyprotein. Both forms undergo autoproteolytic processing to generate the 90-kDa Nup98 and either an 8-kDa tail or the nucleoporin Nup96. An equivalent cleavage event occurs in one yeast ortholog, Nup145, to produce Nup145N and Nup145C. We previously proposed that Nup145N, and possibly the other orthologs Nup116 and Nup100, might bind to Nup145C as demonstrated for Nup98 and Nup96. Here we have further investigated the interaction of both yeast and vertebrate Gly-Leu-Phe-Gly nucleoporins with the nuclear pore. We find that dynamic Nup98 binding can be recapitulated in vitro and that simultaneous translation and folding as a polyprotein are not required to allow subsequent binding between Nup98 and Nup96. We show that Nup145N and Nup145C do indeed bind to each other, and we have determined the dissociation constants for these interactions in vitro. Additionally, we characterize two sites of molecular interaction for each binding pair. Of the yeast orthologs, Nup116 binds far less robustly to Nup145C than does Nup145N, and Nup100 binding is barely detectable. Thus, we conclude that Nup116 and Nup100 likely use means of incorporation into the nuclear pore complex that are distinct from those used by Nup145N.  相似文献   

19.
Human Rhinovirus (HRV) infection results in shut down of essential cellular processes, in part through disruption of nucleocytoplasmic transport by cleavage of the nucleoporin proteins (Nups) that make up the host cell nuclear pore. Although the HRV genome encodes two proteases (2A and 3C) able to cleave host proteins such as Nup62, little is known regarding the specific contribution of each. Here we use transfected as well as HRV-infected cells to establish for the first time that 3C protease is most likely the mediator of cleavage of Nup153 during HRV infection, while Nup62 and Nup98 are likely to be targets of HRV2A protease. HRV16 3C protease was also able to elicit changes in the appearance and distribution of the nuclear speckle protein SC35 in transfected cells, implicating it as a key mediator of the mislocalisation of SC35 in HRV16-infected cells. In addition, 3C protease activity led to the redistribution of the nucleolin protein out of the nucleolus, but did not affect nuclear localisation of hnRNP proteins, implying that complete disruption of nucleocytoplasmic transport leading to relocalisation of hnRNP proteins from the nucleus to the cytoplasm in HRV-infected cells almost certainly requires 2A in addition to 3C protease. Thus, a specific role for HRV 3C protease in cleavage and mislocalisation of host cell nuclear proteins, in concert with 2A, is implicated for the first time in HRV pathogenesis.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) Rev contains a leucine-rich nuclear export signal that is essential for its nucleocytoplasmic export mediated by hCRM1. We examined the role of selected nucleoporins, which are located in peripheral structures of the nuclear pore complex and are thought to be involved in export, in Rev function in human cells. First, we found that upon actinomycin D treatment, Nup98, but not Nup214 or Nup153, is able to translocate to the cytoplasm of HeLa cells, demonstrating that Nup98 may act as a soluble factor. We further showed that Rev can recruit Nup98 and Nup214, but not Nup153, to the nucleolus. We also found that the isolated FG-containing repeat domains of Nup98 and Nup214, but not those of Nup153, competitively inhibit the Rev/RRE-mediated expression of HIV. Taken together, the recruitment of Nup98 and Nup214 by Rev and the competitive inhibition exhibited by their NP domains demonstrate direct participation of Nup98 and Nup214 in the Rev-hCRM1-mediated export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号