首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro studies using isolated cells, mitochondria and submitochondrial fractions demonstrated that in steroid synthesizing cells, the peripheral-type benzodiazepine receptor (PBR) is an outer mitochondrial membrane protein, preferentially located in the outer/inner membrane contact sites, involved in the regulation of cholesterol transport from the outer to the inner mitochondrial membrane, the rate-determining step in steroid biosynthesis. Mitochondrial PBR ligand binding characteristics and topography are sensitive to hormone treatment suggesting a role of PBR in the regulation of hormone-mediated steroidogenesis. Targeted disruption of the PBR gene in Leydig cells in vitro resulted in the arrest of cholesterol transport into mitochondria and steroid formation; transfection of the mutant cells with a PBR cDNA rescued steroidogenesis demonstrating an obligatory role for PBR in cholesterol transport. Molecular modeling of PBR suggested that it might function as a channel for cholesterol. This hypothesis was tested in a bacterial system devoid of PBR and cholesterol. Cholesterol uptake and transport by these cells was induced upon PBR expression. Amino acid deletion followed by site-directed mutagenesis studies and expression of mutant PBRs demonstrated the presence in the cytoplasmic carboxy-terminus of the receptor of a cholesterol recognition/interaction amino acid consensus sequence. This amino acid sequence may help for recruiting the cholesterol coming from intracellular sites to the mitochondria.  相似文献   

2.
The peripheral benzodiazepine receptor (PBR) is a mitochondrial protein involved in the formation of mitochondrial permeability transition (PT) pores which play a critical role during the early events of apoptosis. PBRs are located in many tissues and are strongly expressed in the superficial layers of human epidermis. PBRs play a protective role against free radical damage and PBR ligands modulate apoptosis. To investigate the role of PBR during the early events of ultraviolet (UV)-mediated apoptosis we compared the effects of UVB on PBR-transfected Jurkat cells and their wild type counterparts devoid of any PBR expression. Results indicate that early after UVB exposure (up to 4 h), PBR-transfected cells were more resistant to apoptosis and exhibited a delayed mitochondrial transmembrane potential drop, a diminished superoxide anions production, and a reduced caspase-3 activation. Taken together these findings suggest that PBR may regulate early death signals leading to UV induced apoptosis.  相似文献   

3.
Williams CL 《Cellular signalling》2003,15(12):1071-1080
Many small GTPases in the Ras and Rho families have a C-terminal polybasic region (PBR) comprised of multiple lysines or arginines. The PBR controls diverse functions of these small GTPases, including their ability to associate with membranes, interact with specific proteins, and localize in subcellular compartments. Different signaling pathways mediated by Ras and Rho family members may converge when the small GTPases are directed by their PBRs to shared binding sites in specific proteins or at cell membranes. The PBR promotes the interactions of small GTPases with SmgGDS, which is a nucleocytoplasmic shuttling protein that stimulates guanine nucleotide exchange by small GTPases. The PBR of Rac1 was recently found to have a functional nuclear localization signal (NLS) sequence, which enhances the nuclear accumulation of protein complexes containing SmgGDS and Rac1. Sequence analysis demonstrates that canonical NLS sequences (K-K/R-x-K/R) are present in the PBRs of additional Ras and Rho family members, and are evolutionarily conserved across several phyla. These findings suggest that the PBR regulates the nucleocytoplasmic shuttling of some Ras and Rho family members when they are in protein complexes that are too large to diffuse through nuclear pores. These diverse functions of the PBR indicate its critical role in signaling by Ras and Rho family GTPases.  相似文献   

4.
Benzodiazepines are a class of psychoactive drugs widely used for their anxiolytic, anticonvulsant, muscle relaxant and hypnotic properties. Although the benzodiazepine receptor in the central nervous system has been well studied, the role of peripheral type benzodiazepine receptor, PBR, remains elusive. Here, we show that there are two PBR homologous genes in amniotes, PBR and PBRL, based on phylogenetic analysis. In chickens, PBRL is exclusively expressed during early development in differentiating primitive erythrocytes and this expression is tightly correlated with that of hemoglobin genes. PBR is not expressed in hematopoietic system during this period and is weakly expressed in developing central nervous system. Because one of PBRs' known functions is to regulate heme transport between the mitochondria and cytoplasm, we investigated expression profiles of heme biosynthesis genes. Seven of the eight enzymes involved in heme biosynthesis, with the exception of protoporphyrinogen oxidase, are present in chicken genome. Five of them, delta-aminolevulinate synthase, delta-aminolevulinic acid dehydrogenase, porphobilinogen deaminase, coproporphyrinogen decarboxylase and ferrochelatase, show stage-specific increase in gene expression correlated with primitive hematopoiesis, but not with primitive erythrocyte differentiation. PBRL protein is localized to the mitochondria in culture cells, and pharmacological inhibition of PBRL activity results in a decrease in globin protein levels during primitive erythropoiesis. Our data suggest a developmental role of PBRs in erythropoiesis in chickens, possibly via the regulation of heme availability for the assembly of functional hemoglobins.  相似文献   

5.
Expression of peripheral benzodiazepine receptors (PBR) has been found in every tissue examined; however, it is most abundant in steroid-producing tissues. Although the primary function of PBR is the regulation of steroidogenesis, its existence in nonsteroidogenic tissues as well as in other cellular compartments including the nucleus suggests that there may be other roles for PBR. Our laboratory reported earlier a significant increase of PBR density in the nucleus of DMBA-induced malignant submandibular glands of rats, suggesting a role of PBR in nuclear events of peripheral tissues. Since then numerous studies have demonstrated the abundance of PBR in tumors. Numerous studies implicate a role for cholesterol in the mechanisms underlying cell proliferation and cancer progression. Based on studies with a battery of human breast cancer cell lines and several human tissue biopsies, Hardwick et al. suggested that PBR expression, nuclear localization, and PBR-mediated cholesterol transport into the nucleus are involved in human breast cancer cell proliferation and aggressive phenotype expression. The purpose of the present study is to confirm this hypothesis by developing an animal breast cancer model and correlating the above events with the breast cancer. Weanling rats were maintained on a diet containing animal protein (casein) for 30 days and then a single dose of DMBA in sesame oil (80 mg/kg) was administered by gavage to the animals. Control animals received the vehicle only. After 122 days of DMBA administration, the animals were sacrificed. All tumors were detected by palpation. Bmax of PBRs was 52.6% and 128.4% higher in the non-aggressive and aggressive cancer tissues, respectively, than that in normal tissues. Cholesterol uptake into isolated nuclei was found to be higher in both non-aggressive and aggressive tumor breast tissue than that in control tissue. There was also corresponding increase in Bmax of PBRs in the nucleus of cancer tissues. Furthermore, the nuclear nucleoside triphosphatase (NTPase) activity was found to be higher in aggressive tumor tissues than that in non-aggressive tumor tissues. In conclusion, these data suggest that PBR ligand binding, and PBR-mediated cholesterol transport into the nucleus may be involved in the development of mammary gland adenocarcinoma, thus participating in the advancement of the disease.  相似文献   

6.
The economic and/or energetic feasibility of processes based on using microalgae biomass requires an efficient cultivation system. In photobioreactors (PBRs), the adhesion of microalgae to the transparent PBR surfaces leads to biofouling and reduces the solar radiation penetrating the PBR. Light reduction within the PBR decreases biomass productivity and, therefore, the photosynthetic efficiency of the cultivation system. Additionally, PBR biofouling leads to a series of further undesirable events including changes in cell pigmentation, culture degradation, and contamination by invasive microorganisms; all of which can result in the cultivation process having to be stopped. Designing PBR surfaces with proper materials, functional groups or surface coatings, to prevent microalgal adhesion is essential for solving the biofouling problem. Such a significant advance in microalgal biotechnology would enable extended operational periods at high productivity and reduce maintenance costs. In this paper, we review the few systematic studies performed so far and applied the existing thermodynamic and colloidal theories for microbial biofouling formation in order to understand microalgal adhesion on PBR surfaces and the microalgae–microalgae cell interactions. Their relationship to the physicochemical properties of the solid PBR surface, the microalgae cell surfaces, and the ionic strength of the culture medium is discussed. The suitability and the applicability of such theories are reviewed. To this end, an example of biofouling formation on a commercial glass surface is presented for the marine microalgae Nannochloropsis gaditana. It highlights the adhesion dynamics and the inaccuracies of the process and the need for further refinement of previous theories so as to apply them to flowing systems, such as is the case for PBRs used to culture microalgae.  相似文献   

7.
Keeping an appropriate mixing state of the multiphase flows in photobioreactors (PBRs) is a key issue for the optimal design and operation of the PBRs. In the present study, an experimental investigation is conducted to quantify the turbulent mixing of multiphase flows inside a flat-panel PBR and its consequential effects on the performance of the PBR for algae cultivation. While a high-resolution particle image velocity (PIV) system is used to achieve detailed flow field measurements to quantify the unsteady behaviors of the multiphase flows and turbulent mixing inside the PBR, algae cultures are also grown in the same PBR under the same test conditions. Detailed flow field measurement results are correlated with the algae growth performance in order to elucidate the underlying physics and explore/optimize design paradigms. The measurement results reveal that even though the airflow rate that is supplied to the PBR plays a dominant role in determining the characteristics of the turbulent mixing in the PBR, the geometric positioning of the aeration inlets also significantly contributes to the turbulent mixing. These differences in turbulent mixing cause differences in algae productivity within the PBR, clearly effecting efficiency of the PBR.  相似文献   

8.
This article describes the development history of packed-bed bioreactors (PBRs) used for the culture of mammalian cells. It further reviews the current applications of PBRs and discusses the steps forward in the development of these systems for bioprocess and biomedical applications. The latest generation of PBRs used in bioprocess applications achieve very high cell densities (>10(8) cells ml(-1)) leading to outstandingly high volumetric productivity. However, a major bottleneck of such PBRs is their relatively small volume. The current maximal volume appears to be in the range of 10 to 30 l. A scale-up of more than 10-fold would be necessary for these PBRs to be used in production processes. In biomedical applications, PBRs have proved themselves as compact bioartificial organs, but their metabolic activity declines frequently within 1 to 2 weeks of operation. A main challenge in this field is to develop cell lines that grow consistently to high cell density in vitro and maintain a stable phenotype for a minimum of 1 to 2 months. Achieving this will greatly enhance the usefulness of PBR technology in clinical practice.  相似文献   

9.
We observed evolutionary conservation of canonical nuclear localization signal sequences (K(K/R)X(K/R)) in the C-terminal polybasic regions (PBRs) of some Rac and Rho isoforms. Canonical D-box sequences (RXXL), which target proteins for proteasome-mediated degradation, are also evolutionarily conserved near the PBRs of these small GTPases. We show that the Rac1 PBR (PVKKRKRK) promotes Rac1 nuclear accumulation, whereas the RhoA PBR (RRGKKKSG) keeps RhoA in the cytoplasm. A mutant Rac1 protein named Rac1 (pbrRhoA), in which the RhoA PBR replaces the Rac1 PBR, has greater cytoplasmic localization, enhanced resistance to proteasome-mediated degradation, and higher protein levels than Rac1. Mutating the D-box by substituting alanines at amino acids 174 and 177 significantly increases the protein levels of Rac1 but not Rac1(pbrRhoA). These results suggest that Rac1 (pbrRhoA) is more resistant than Rac1 to proteasome-mediated degradative pathways involving the D-box. The cytoplasmic localization of Rac1(pbrRhoA) provides the most obvious reason for its resistance to proteasome-mediated degradation, because we show that Rac1(pbrRhoA) does not greatly differ from Rac1 in its ability to stimulate membrane ruffling or to interact with SmgGDS and IQGAP1-calmodulin complexes. These findings support the model that nuclear localization signal sequences in the PBR direct Rac1 to the nucleus, where Rac1 participates in signaling pathways that ultimately target it for degradation.  相似文献   

10.
Based on a previously established model for radiant light transfer in photobioreactors (PBR), taking into account absorption and scattering of light, a new knowledge model for coupling radiant light energy available and local growth kinetics in PBRs for the photoheterotrophic bacteria Rhodospirillum rubrum is discussed. A revised method is presented for the calculation of the absorption and scattering coefficients. The specific characteristics of the electron-transfer chains in such microorganisms leads to definition of three different metabolic zones in the PBR, explaining the behavior of mean kinetics observed in a wide range of incident light fluxes. The model is validated in rectangular PBRs for five different carbon sources and proved robust and fully predictive. This approach can be considered for simulation and model-based predictive control of PBRs cultivating photoheterotrophic microorganisms.  相似文献   

11.
Peripheral benzodiazepine receptors and mitochondrial function   总被引:20,自引:0,他引:20  
For over 20 years, numerous investigations have focused on elucidating the function of the peripheral benzodiazepine receptor (PBR). This relatively small protein (18kDa) arouses great interest because of its association with numerous biological functions, including the regulation of cellular proliferation, immunomodulation, porphyrin transport and heme biosynthesis, anion transport, regulation of steroidogenesis and apoptosis. Although the receptor was first identified as a binding site for the benzodiazepine, diazepam, in peripheral organ systems, the PBR was subsequently found to be distinct from the central benzodiazepine receptor (CBR) in terms of its pharmacological profile, structure, subcellular localization, tissue distribution and physiological functions. The PBR is widely expressed throughout the body, with high densities found in steroid-producing tissues. In contrast, its expression in the CNS is restricted to ependymal cells and glia. The benzodiazepine Ro5-4864 and the isoquinoline carboxamide PK11195 exhibit nanomolar affinity for the PBR, and are the archtypic pharmacological tools for characterizing the receptor and its function. Primary among these functions are its regulation of steroidogenesis and apoptosis, which reflect its mitochondrial localization and involvement in oxidative processes. This review will evaluate the basic pharmacology and molecular biology of the PBR, and highlight its role in regulating mitochondrial function, the mitochondrial transmembrane potential and its sensitivity to reactive oxygen species (ROS), and neurosteroid synthesis, processes relevant to the pathogenesis of a number of neurological and neuropsychiatric disorders.  相似文献   

12.
Lacapère JJ  Papadopoulos V 《Steroids》2003,68(7-8):569-585
Cholesterol transport from the outer to the inner mitochondrial membrane is the rate-determining step in steroid and bile acid biosyntheses. Biochemical, pharmacological and molecular studies have demonstrated that the peripheral-type benzodiazepine receptor (PBR) is a five transmembrane domain mitochondrial protein involved in the regulation of cholesterol transport. PBR gene disruption in Leydig cells completely blocked cholesterol transport into mitochondria and steroid formation, while PBR expression in bacteria, devoid of endogenous PBR and cholesterol, induced cholesterol uptake and transport. Molecular modeling of PBR suggested that cholesterol might cross the membrane through the five helices of the receptor and that synthetic and endogenous ligands might bind to common sites in the cytoplasmic loops. A cholesterol recognition/interaction amino acid consensus (CRAC) sequence in the cytoplasmic carboxy-terminus of the PBR was identified by mutagenesis studies. In vitro reconstitution of PBR into proteoliposomes demonstrated that PBR binds both drug ligands and cholesterol with high affinity. In vivo polymeric forms of PBR were observed and polymer formation was reproduced in vitro, using recombinant PBR protein reconstituted into proteoliposomes, associated with an increase in drug ligand binding and reduction of cholesterol-binding capacity. This suggests that the various polymeric states of PBR might be part of a cycle mediating cholesterol uptake and release into the mitochondria, with PBR functioning as a cholesterol exchanger against steroid product(s) arising from cytochrome P450 action. Taking into account the widespread presence of PBR in many tissues, a more general role of PBR in intracellular cholesterol transport and compartmentalization might be considered.  相似文献   

13.
Since the peripheral benzodiazepine receptor (PBR) has been primarily found as a high-affinity binding site for diazepam in rat kidney, numerous studies of it have been performed. However, the physiological role and functions of PBR have not been fully elucidated. Currently, we presented the pharmacological profile of two high and selective PBR ligands, N-(2,5-dimethoxybenzyl)-N-(4-fluoro-2-phenoxyphenyl)acetamide (7-096, DAA1106) (PBR: IC(50)=0.28 nM) and N-(4-chloro-2-phenoxyphenyl)-N-(2-isopropoxybenzyl)acetamide (7-099, DAA1097) (PBR: IC(50)=0.92 nM). The compounds are aryloxyanilide derivatives, and identified with known PBR ligands such as benzodiazepine (1, Ro5-4864), isoquinoline (2, PK11195), imidazopyridine (3, Alpidem), and indole (5, FGIN-1-27) derivatives. The aryloxyanilide derivatives, which have been derived by opening the diazepine ring of 1, are a novel class as PBR ligands and have exhibited high and selective affinity for peripheral benzodiazepine receptors (PBRs). These novel derivatives would be useful for exploring the functions of PBR. In this paper, the design, synthesis and structure-affinity relationships of aryloxyanilide derivatives are described.  相似文献   

14.
Maximum photobioreactor (PBR) efficiency is a must in applications such as the obtention of microalgae-derived fuels. Improving PBR performance requires a better understanding of the "light regime", the varying irradiance that microalgal cells moving in a dense culture are exposed to. We propose a definition of light regime that can be used consistently to describe the continuously varying light patterns in PBRs as well as in light/dark cycles. Equivalent continuous and light/dark regimes have been experimentally compared and the results show that continuous variations are not well represented by light/dark cycles, as had been widely accepted. It has been shown that a correct light regime allows obtaining photosynthetic rates higher than the corresponding to continuous light, the so-called "flashing light effect" and that this is possible in commercial PBRs. A correct PBR operation could result in photosynthetic efficiency close to the optimum eight quanta per O(2).  相似文献   

15.
Noise is an environmental physical agent, which is regarded as a stressful stimulus: impairment and modifications in biological functions are reported, after loud noise exposure, at several levels in human and animal organs and apparatuses, as well as in the endocrine, cardiovascular and nervous system. In the present study equilibrium binding parameters of peripheral benzodiazepine receptors (PBRs) labelled by the specific radioligand [3H]PK 11195, were evaluated in cardiac tissue of rats submitted to 6 or 12 h noise exposure and of rats treated "in vivo" with PBR ligands such as PK 11195, Ro54864, diazepam and then noise-exposed. Results revealed a statistically significant decrease in the maximum number of binding sites (Bmax) of [3H]PK 11195 in atrial membranes of 6 or 12 h noise exposed rats, compared with sham-exposed animals, without any change in the dissociation constant (Kd). The "in vivo" PBR ligand pre-treatment counteracted the noise-induced modifications of PBR density. As PBRs are mainly located on mitochondria we also investigated whether noise exposure can affect the [3H]PK 11195 binding parameters in isolated cardiac mitochondrial fractions. Results indicated a significant Bmax value decrease in right atrial mitochondrial fractions of rats 6 or 12 h noise-exposed. Furthermore, as PBR has been suggested to be a supramolecular complex that might coincide with the not-yet-established structure of the mitochondrial permeability transition (MPT)-pore, the status of the MPT-pore in isolated heart mitochondria was investigated in noise- and sham-exposed rats. The loss of absorbance associated with the calcium-induced MPT-pore opening was greater in mitochondria isolated from hearts of 6 h noise- than those of sham-exposed rats. In conclusion, these findings represent a further instance for PBR density decrease in response to a stressful stimulus, like noise; in addition they revealed that "in vivo" administration of PBR ligands significantly prevents this decrease. Finally, our data also suggest the involvement of MPT in the response of an organism to noise stress.  相似文献   

16.
Peripheral benzodiazepine receptor (PBR) is a protein of the outer mitochondrial membrane, which participates in the regulation of the sysnthesis of steroid hormones, cell proliferation, and apoptosis. In this work, an immunocytochemical study has been carried out to visualize the peripheral benzodiazepine receptor and enzyme cytochrome P450SCC in skin cells, i.e., normal keratinocytes, normal melanocytes, and cells of malignant melanoma and skin epidermoid carcinoma. The level of endogenous PBR ligand, i.e., diazepam binding inhibitor (DBI), has been studied. A unilateral change in the level of studied proteins in tumor cells has been shown. Role of proteins participating in synthesis of steroid hormones in skin in functioning of normal skin and development of skin diseases is discussed.  相似文献   

17.
Central benzodiazepine (BZ) receptors are located only in the central nervous system and mediate the clinical effects obtained by various BZs. In addition, there is another receptor that binds BZs with different drug specificities, which is located mainly on the outer mitochondrial membrane of various peripheral tissues. Peripheral BZ receptors (PBR) are composed of three subunits: an isoquinoline binding site, a voltage-dependent anion channel, and an adenine nucleotide carrier, with molecular weights of 18, 32, and 30 kDa, respectively. Complementary DNA of the isoquinoline binding subunit has been cloned in rat, calf, and human. The major role of PBR is in the regulation of steroid biosynthesis. Various PBR ligands stimulate the conversion of cholesterol into pregnenolone and the production of steroid hormones. The naturally occurring diazepam-binding inhibitor stimulates in vivo steroidogenesis via binding to PBR. In the female, PBR density is increased in rat and human ovary proportional with greater cell maturation and differentiation. In the male, testosterone modulates PBR density in the genital tract. These results show the strong relationship between PBR and the endocrine system.  相似文献   

18.
A key element in the regulation of mammalian steroid biosynthesis is the 18 kDa peripheral-type benzodiazepine receptor (PBR), which mediates mitochondrial cholesterol import. PBR also possess an affinity to the tetrapyrrole metabolite protoporphyrin. The bacterial homolog to the mammalian PBR, the Rhodobacter TspO (CrtK) protein, was shown to be involved in the bacterial tetrapyrrole metabolism. Looking for a similar mitochondrial import mechanism in plants, protein sequences from Arabidopsis and several other plants were found with significant similarities to the mammalian PBR and to the Rhodobacter TspO protein. A PBR-homologous Arabidopsis sequence was cloned and expressed in E. coli. The recombinant gene product showed specific high affinity benzodiazepine ligand binding. Moreover, the protein applied to E. coli protoplasts caused an equal benzodiazepine-stimulated uptake of cholesterol and protoporphyrin IX. These results suggest that the PBR like protein is involved in steroid import and is directing protoporphyrinogen IX to the mitochondrial site of protoheme formation.  相似文献   

19.
Astrocytes and astrocytoma cells actively express the diazepam-binding inhibitor (DBI) gene, suggesting that DBI-processing products may regulate glial cell activity. In the present study, we have investigated the possible effect of one of the DBI-derived peptides, the triakontatetraneuropeptide (TTN), on [(3)H]thymidine incorporation in cultured rat astrocytes. Reversed-phase HPLC analysis of incubation media indicated that TTN is the major form of DBI-derived peptides released by cultured astrocytes. At very low concentrations (10(-14)-10(-11) M), TTN induced a dose-dependent increase in [(3)H]thymidine incorporation, whereas at higher concentrations (10(-10)-10(-5) M) the effect of TTN gradually declined. In the same range of concentrations, the specific peripheral-type benzodiazepine receptor (PBR) agonist Ro 5-4864 mimicked the bell-shaped stimulatory effect of TTN on [(3)H]thymidine incorporation. The PBR antagonist PK11195 (10(-6) M) suppressed the stimulatory action of both TTN and Ro 5-4864 on [(3)H]thymidine incorporation, whereas the central-type benzodiazepine receptor antagonist flumazenil (10(-6) M) had no effect. The present study demonstrates that the endozepine TTN stimulates DNA synthesis in rat glial cells through activation of PBRs. These data strongly suggest that TTN exerts an autocrine/paracrine stimulatory effect on glial cell proliferation.  相似文献   

20.
An in‐depth investigation of how various illumination conditions influence microalgal growth in photobioreactors (PBR) has been presented. Effects of both the light emission spectrum (white and red) and the light incident angle (0° and 60°) on the PBR surface were investigated. The experiments were conducted in two fully controlled lab‐scale PBRs, a torus PBR and a thin flat‐panel PBR for high cell density culture. The results obtained in the torus PBR were used to build the kinetic growth model of Chlorella vulgaris taken as a model species. The PBR model was then applied to the thin flat‐panel PBR, which was run with various illumination conditions. Its detailed representation of local rate of photon absorption under various conditions (spectral calculation of light attenuation, incident angle influence) enabled the model to take into account all the tested conditions with no further adjustment. This allowed a detailed investigation of the coupling between radiation field and photosynthetic growth. Effects of all the radiation conditions together with pigment acclimation, which was found to be relevant, were investigated in depth. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:247–261, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号