共查询到20条相似文献,搜索用时 15 毫秒
1.
The calcium-stimulated incorporation of ethanolamine and serine into the phospholipids of the housefly Musca domestica 总被引:1,自引:1,他引:0
H. D. Crone 《The Biochemical journal》1967,104(2):695-704
1. The calcium-stimulated incorporation of [2-14C]ethanolamine and l-[3-14C]-serine into the phospholipids of homogenates of the fat bodies from larval houseflies (Musca domestica) was studied. 2. Ethanolamine and serine acted as competitive inhibitors with one another. N-Methylethanolamine was not distinguished from ethanolamine by the system. Tris buffer was also a competitor with these compounds, and a number of other amino alcohols were inhibitory, probably competitively. 3. The incorporation of [32P]phosphorylethanolamine into phospholipids was observed in suspensions of whole fat bodies. This incorporation was stimulated by magnesium. 4. During the incubation of the homogenates, a calcium-stimulated breakdown of phospholipids by a phospholipase A occurred. 5. These results are compared with results published for similar mammalian systems, and their possible physiological significance is discussed. 相似文献
2.
Canine cardiac microsomes were shown to incorporate the nitrogenous bases, serine, ethanolamine, and choline, into their respective phospholipids by the energy-independent, Ca2+-stimulated base-exchange reactions. The optimal Ca2+ concentration was 2.5 mM. Metal ions other than Ca2+ either inhibited or had no effect on the activities. La3+ and Mn2+ were both potent inhibitors. The pH optimum for the reactions at 2.5 mM Ca2+ was approx. 7.8 and depended upon Ca2+ concentration. Apparent Km values at 2.5 mM Ca2+ were 0.06 mM for L-serine, 0.13 mM for ethanolamine and 0.49 mM for choline. The kinetic and metal ion inhibition studies suggest that the choline-exchange reaction is a separate process from the serine and ethanolamine reactions. The ATP-stimulated Ca2+ binding system of the cardiac membranes was not related to the base-exchange reactions; however, the energy-independent Ca2+ binding to the membranes appears to be related to the exchange reactions. 相似文献
3.
[14C]OleoylCoA was incorporated into phosphatidylinositol 4 times more efficiently than into phosphatidylserine in rat brain and liver microsomes when incubated with various levels of 1-acyl-sn-glycero-3-phosphoserine. In contrast, 1-acyl-sn-glycero-3-phosphocholine dependent incorporation of oleoylCoA was only into phosphatidylcholine. When [l-3H]serine labeled 1-acyl-sn-glycero-3-phosphoserine was used as the labeled substrate, no phosphatidylserine synthesis could be detected in rat brain microsomes. OleoylCoA incorporation in phospholipids in the presence of lysophosphatidylserine was primarily at the 2-position while stearoylCoA was incorporated at the 1-position. These results are interpreted to suggest that there is no acylCoA:1-acyl-sn-glycero-3-phosphoserine acyltransferase in rat brain microsomes and the lysophosphatidylserine dependent position-specific incorporation of acylCoA into various phospholipids may be due to an exchange reaction. A simple highly reproducible one dimensional thin-layer chromatographic system is described for the separation of all the major phospholipids of brain and liver. 相似文献
4.
5.
A Mizuno 《Journal of biochemistry》1976,80(1):45-52
The incorporation of serine and ethanolamine into phospholipids in rabbit retinal subcellular fractions and in excised retinas was studied in vitro, and some enzymic properties of the incorporation of phospholipid bases by base exchange were examined in the microsomal fraction. The retina was found to have a higher rate of base exchange for the incorporation of phospholipid bases than other tissues. The retinal microsomal fraction possessed the highest specific activity of base exchange, while the rod outer segment had very little activity. These results suggest that the phospholipids in the rod outer segment may be transferred from the inner segment of the photorecepter cell. The apparent Km values for serine and ethanolamine in the microsomal fraction decreased with decreasing Ca2+ concentration. Although no further increase of incorporation of serine and ethanolamine occurred after 40 min in the microsomal fraction, continuous incorporation of both bases into phospholipids was seen for 3 hr in excised retina. Illumination did not significantly affect the incorporation of serine and ethanolamine in excised retina or in the rod outer segment fraction. Base exchange reaction thus may not play a direct role in the visual process. 相似文献
6.
7.
8.
The incorporation of [5,6(n)-3H]prostaglandin A1 (PGA1) and [1-14C]oleic acid into membrane phospholipids of rat liver microsomes was studied. It was shown that PGA1 is incorporated into phospholipids in a much lesser degree than oleic acid. PGA1 is incorporated into phosphatidylethanolamine and, in a lesser degree, into phosphatidylcholine and phosphatidylinositol + phosphatidylserine. The exogenous cofactors of fatty acid acylation (ATP, CoA, Mg2+) exert no marked influence on the incorporation of PGA1 into the phospholipids. PGA1 interacts with isolated rat liver phospholipids; the PGA1-phospholipid conjugate formed is not destroyed in the course of one- or two-dimensional thin-layer chromatography. On the other hand, PGA1 binding to unsaturated phosphatidylcholines is strictly dependent on the phospholipid oxidation index. It is concluded that PGA1 incorporation into rat liver phospholipids is a result of interaction of PGA1 with peroxidized phospholipids. 相似文献
9.
10.
Substantial activities of cholinephosphotransferase (EC 2.7.8.2) and ethanolaminephosphotransferase (EC 2.7.8.1) were found with lysed synaptosomes but not with intact synaptosomes isolated from adult rat brains. Synaptosomal and non-synaptosomal microsomal transferases were similar in kinetic properties. Substantial activities of synaptosomal transferases have not been described previously. Part of the glycerophospholipids in synaptosomal membranes may be synthesized in the nerve ending in addition to the glycerophospholipids supplied by axonal transport. The synthesis of the alkylacyl type of choline and ethanolamine glycerophospholipids was moderately inhibited by 1 mM ATP and 1 microM cyclic AMP. This synthesis was also inhibited by more than 50% by 1 mM norepinephrine and to a lesser extent by 5 mM hydroxytryptamine and 1 mM acetylcholine. Cyclic AMP may mediate the effects of biogenic amines. The relative synthesis of different glycerophospholipid classes and the relative proportion of alkylacyl type (plasmalogen precursors) and diacyl type of glycerophospholipids may be influenced by the levels of adenine nucleotides and/or biogenic amines. Elevated cyclic AMP levels will decrease the synthesis of plasmalogen precursors. 相似文献
11.
12.
13.
In vivo incorporation of l-[14C]serine into phospholipids and proteins of the subcellular fractions of developing rat brain 总被引:1,自引:0,他引:1
A study was conducted on the in vivo incorporation of l -[14C]-serine into the lipids and proteins of the various subcellular fractions of the developing rat brain before and during the stage of active myelination. The total radioactivity in the various fractions at 12 days of age was higher than that at 3 days, while the radioactive specific activity was reversed. The specific activities of the proteins and lipids were higher at 3 days of age with the exception of the subcellular fraction containing myelin. At both ages the lipids of the various cellular fractions had similar specific activities, a finding that suggests a common source for lipid biosynthesis. Incorporation of radioactivity into the various phospholipids was in the following order: phosphatidyl serine > phosphatidyl ethanolamine > phosphatidal serine > sphingomyelin and phosphatidyl choline. Of all the phospholipids, the plasmalogens increased most in total radioactivity during the period when meylination was most active. Serine-containing phospholipids appear to be most tightly bound to proteins. The brain mitochrondrial fraction contained most of the phosphatidyl serine decarboxylase activity with some activity in the nuclei. Biosynthesis of phosphatdyil ethanolamine through decarboxylation of phosphatidyl serine could take place in rat brain. Four unidentified radioactive metabolites were found in the acid-soluble fraction in addition to l -[14C]serine. 相似文献
14.
Subcellular incorporation of 32P into phosphoinositides and other phospholipids in isolated hepatocytes 总被引:6,自引:0,他引:6
Isolated rat hepatocytes were incubated with 32Pi for various times and then fractionated into plasma membranes, mitochondria, nuclei, lysosomes, and microsomes by differential centrifugation and Percoll density gradient centrifugation. The phospholipids were isolated and deacylated by mild alkaline treatment. The glycerophosphate esters were separated by anion exchange high pressure liquid chromatography and assayed for radioactivity. It was found that plasma membranes, mitochondria, nuclei, lysosomes, and microsomes displayed similar rates of 32P incorporation into the major phospholipids, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol, and phosphatidic acid. This suggests that the phospholipids of these organelles are undergoing rapid turnover and replacement with newly synthesized phospholipids from the endoplasmic reticulum. However, the plasma membrane fraction incorporated 32P into phosphatidylinositol 4-phosphate (DPI) and phosphatidylinositol 4,5-bisphosphate (TPI) at rates 5-10 and 25-50 times, respectively, faster than any of the other subcellular fractions. Although the plasma membrane is the primary site of 32P incorporation into DPI and TPI, this study also demonstrates that significant incorporation of 32P into DPI occurs in other subcellular sites, especially lysosomes. 相似文献
15.
The utilization of ethanolamine and serine for ethanolamine phosphoglyceride synthesis by human Y79 retinoblastoma cells 总被引:2,自引:0,他引:2
M A Yorek R T Rosario D T Dudley A A Spector 《The Journal of biological chemistry》1985,260(5):2930-2936
Phospholipid synthesis was investigated in human Y79 retinoblastoma cells, a cultured cell line of retinal origin that retains many neural characteristics. Ethanolamine is taken up by Y79 cells through a high-affinity transport system and is utilized to synthesize ethanolamine and choline phosphoglycerides. High-affinity ethanolamine uptake has a K'm of 40.6 microM and a V'max of 1.06 nmol/min/mg protein, and the process is Na+ dependent. Choline is the only compound tested that reduced ethanolamine uptake, and very high choline concentrations were required to produce this effect. The cells incorporate ethanolamine into phosphatidylethanolamine and ethanolamine plasmalogen at equivalent rates, and the rates of catabolism of these phospholipids are similar. Only a small quantity of ethanolamine is incorporated into phosphatidylcholine, but the amount is not reduced by the addition of choline. Serine is incorporated into phosphatidylserine, which then is converted to phosphatidylethanolamine. Ethanolamine reduces but does not abolish this conversion. Unlike ethanolamine, only a small amount of serine is incorporated into ethanolamine plasmalogen. It is possible that the ethanolamine high-affinity uptake system is necessary to provide a neural cell with enough free ethanolamine for ethanolamine plasmalogen synthesis. 相似文献
16.
Metabolism of the ethanolamine phosphoglycerides of mouse brain myelin and microsomes 总被引:2,自引:0,他引:2
L A Horrocks 《Journal of neurochemistry》1969,16(1):13-18
Abstract— Three groups of six mice each were killed 1, 4 and 7 days after an intracerebral injection of [1,2-14C]ethanolamine. The specific radioactivities of the acid-labile ethanolamine phosphoglycerides (ethanolamine plasmalogens) and of the acid-stable ethanolamine phosphoglycerides (diacyl and alkyl acyl glycerophosphoryletholamines) from myelin and microsomal fractions were determined. All of these brain ethanolamine phosphoglycerides turn over rapidly with an apparent half-life of less than 3 days. The biosynthesis of alkenyl acyl glycerophosphorylethanolamines from diacyl glycerophosphorylethanolamines in mouse brain myelin or microsomes is unlikely. 相似文献
17.
The incorporation of [3H]arachidonic acid ([3H]AA) into cerebral phospholipids was studied in slices and membranes of rat brain cortex. Effects of preincubation, different washing procedures with or without bovine serum albumin, or incubation in the presence of neurotransmitters were investigated. Over 60% of the phospholipid-bound [3H]arachidonic acid was recovered in phosphatidylinositol in both slice and membrane preparations. Preincubation or addition of bovine serum albumin resulted in slower incorporation of the isotope to membrane as well as to slice phospholipids, but removal of the added serum albumin enhanced the incorporation in the membrane preparation. Preincubation of slices in the presence of norepinephrine (1 mM) or serotonin (1 or 2.5 mM) resulted in a marked increase of [3H]arachidonate incorporation into phosphatidylinositol concomitant with decreased incorporation into other phosopholipids. Analysis of [3H]arachidonate incorporation as a function of time, in accordance with a compartmental model, indicated that observed differences in the accumulation of [3H]arachidonate in various phospholipids were probably due to different rates of acylation by arachidonyl-transferases with no appreciable changes in the rates of deacylation by enzymes of the phospholipase A type. Further, the pool of phospholipid-bound arachidonate which is readily available for deacylation-reacylation processes appears to be distributed differentially among various phospholipids with more than 50% of this pool located in phosphatidylinositol and only 0.75% of the phosphatidylinositol molecules appear to be active in deacylation-reacylation processes involving arachidonyl groups. 相似文献
18.
G Goracci C Blomstrand G Arienti A Hamberger G Porcellati 《Journal of neurochemistry》1973,20(4):1167-1180
Abstract— The calcium-dependent incorporation of L-[3-14C]serine and [1,2?14C]ethanolamine into the phospholipid of isolated neuronal and glial cells from rabbit brain was studied, and the distribution of the enzymic system among the correspondent subfractions was examined. The neuronal cell-enriched fraction was found to possess a much higher rate of exchange of both bases than the glial cell-enriched fraction. Among the sub-fractions isolated from the neuronal and glial cells, those corresponding to neuronal plasma membranes and microsomes showed a noticeably higher exchange of serine and ethanolamine compared to the corresponding subfractions from glia. Neuronal/glial ratios of about 6–8 were found for the exchange activity in both plasma membrane-enriched fraction and in microsomes. Synaptosomes and synaptosomal subfractions contained low activities. It is concluded that the calcium-dependent enzymic system for the exchange of serine, ethanolamine and other nitrogenous bases with endogenous phospholipid is concentrated mostly in the neuronal perikaryal membranes, and could be used as a neuronal marker. 相似文献
19.
20.
[2-14C,2-3H]1,2-Heptadecanediol administered intracerebrally to 18-day-old rats was found to be incorporated as such into phospholipid Chemical and enzymic degradation of the choline phosphatide fraction showed that an appreciable amount of radioactivity was associated with 2--acyl heptadecanediol phosphoryl choline. 相似文献