首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report describes the use of an antibody directed against the carboxyl terminus of the insulin receptor beta subunit to assess the fate of the insulin receptor protein over the time course of insulin-induced receptor down-regulation. The insulin receptor beta subunit is lost from the cellular membranes of insulin-treated 3T3-C2 fibroblasts with a time course superimposable with the insulin-induced loss of cellular insulin binding activity. Concomitant with the time-dependent loss of the intact beta subunit from the membranes, a 61,000-Da fragment of the insulin receptor beta subunit accumulates in the cytosol of the cells in a time-dependent manner. The insulin-induced loss of the intact beta subunit from the cellular membranes is inhibited by cycloheximide. Chloroquine and the thiol protease inhibitors leupeptin and E-64 inhibit the insulin-induced loss of the intact beta subunit from the membranes and induce an accumulation of the intact subunit in the membranes. However, in the presence of leupeptin, E-64, or chloroquine, the insulin-induced loss of insulin binding activity occurs normally. These data indicate that down-regulation results in the loss of the intact beta subunit from the cellular membranes with the production of a fragment of the beta subunit in the cytosol. The protease responsible for the generation of the fragment is a thiol protease which requires acidic conditions. Since the insulin-induced proteolysis of the beta subunit can be totally inhibited under conditions where the insulin-induced loss of insulin binding activity proceeds normally, the proteolysis of the beta subunit is a process which is separate and distinguishable from the insulin-induced loss of insulin binding activity.  相似文献   

2.
1. A new line of cloned, differentiated rat hepatocytes (RL-PR-C) was evaluated for its usefulness as an in vitro system for studying the regulation of the insulin receptor. 2. Insulin rapidly reversibly and specifically bound to RL-PR-C hepatocytes. Binding of tracer 125I-labeled insulin, which was competitively inhibited by native insulin as well as by proinsulin and analogs of insulin and proinsulin in proportion to their biological activity, was not influenced by glucagon, corticotropin, or human growth hormone. Anti-insulin receptor serum from a patient with Acanthosis Nigricans Type B competed with 125I-labeled insulin for binding to cell surface sites. 3. Trypsinization destroyed insulin binding sites, but these were restored by incubation under growth conditions; a 75% restoration of binding sites was achieved by one cell population doubling. 4. RL-PR-C hepatocytes responded to insulin binding by an increase in glycogen synthesis from glucose. The insulin effect was maximal at 85 nM, but was detectable at lower, more physiological, concentrations. 5. Chronic exposure (for at least 3h) of hepatocytes to insulin (10(-10)--(10(-8) M) reduced by up to 60% the number of binding sites for insulin (down-regulation). Down-regulation was prevented by cycloheximide at concentration (10 micron) sufficient to inhibit markedly protein synthesis from tracer isoleucine. Recovery from down-regulation induced by native insulin at 10(-7 M or lower concentrations was complete by 18 h under growth conditions. 6. Although RL-PR-C hepatocytes spontaneously transform after about 90 population doublings, no significant differences between normal and transformed cells were observed in insulin binding characteristics and in interaction of cells with anti-insulin receptor serum. However, transformed cells exhibited a substantially reduced (maximum of 20%) down-regulation response to insulin. 7. RL-PR-C rat hepatocytes appear, for these reasons, to be a useful model system for studying the regulation of the insulin receptor.  相似文献   

3.
Anti-insulin receptor monoclonal antibody MA-10 inhibits insulin receptor autophosphorylation of purified rat liver insulin receptors without affecting insulin binding (Cordera, R., Andraghetti, G., Gherzi, R., Adezati, L., Montemurro, A., Lauro, R., Goldfine, I. D., and De Pirro, R. (1987) Endocrinology 121, 2007-2010). The effect of MA-10 on insulin receptor autophosphorylation and on two insulin actions (thymidine incorporation into DNA and receptor down-regulation) was investigated in rat hepatoma Fao cells. MA-10 inhibits insulin-stimulated receptor autophosphorylation, thymidine incorporation into DNA, and insulin-induced receptor down-regulation without affecting insulin receptor binding. We show that MA-10 binds to a site of rat insulin receptors different from the insulin binding site in intact Fao cells. Insulin does not inhibit MA-10 binding, and MA-10 does not inhibit insulin binding to rat Fao cells. Moreover, MA-10 binding to down-regulated cells is reduced to the same extent as insulin binding. In rat insulin receptors the MA-10 binding site has been tentatively localized in the extracellular part of the insulin receptor beta-subunit based on the following evidence: (i) MA-10 binds to insulin receptor in intact rat cells; (ii) MA-10 immunoprecipitates isolated insulin receptor beta-subunits labeled with both [35S]methionine and 32P; (iii) MA-10 reacts with rat insulin receptor beta-subunits by the method of immunoblotting, similar to an antipeptide antibody directed against the carboxyl terminus of the insulin receptor beta-subunit. Moreover, MA-10 inhibits autophosphorylation and protein-tyrosine kinase activity of reduced and purified insulin receptor beta-subunits. The finding that MA-10 inhibits insulin-stimulated receptor autophosphorylation and reduces insulin-stimulated thymidine incorporation into DNA and receptor down-regulation suggests that the extracellular part of the insulin receptor beta-subunit plays a role in the regulation of insulin receptor protein-tyrosine kinase activity.  相似文献   

4.
Binding and degradation of 125I-labelled insulin were studied in cultured foetal hepatocytes after exposure to the protein-synthesis inhibitors tunicamycin and cycloheximide. Tunicamycin (1 microgram/ml) induced a steady decrease of insulin binding, which was decreased by 50% after 13 h. As the total number of binding sites per hepatocyte was 20000, the rate of the receptor degradation could not exceed 13 sites/min per hepatocyte. Cycloheximide (2.8 micrograms/ml) increased insulin binding by 30% within 6 h, an effect that persisted for up to 25 h. This drug had a specific inhibitory effect on the degradation of proteins prelabelled for 10 h with [14C]glucosamine, without affecting the degradation of total proteins. Chronic exposure to 10 nM-insulin neither decreased insulin binding nor modified the effect of the drugs. The absence of down-regulation of insulin receptors cannot be attributed to rapid receptor biosynthesis in foetal hepatocytes. Cellular insulin degradation, which is exclusively receptor-mediated, was determined by two different parameters. First, the rate of release of degraded insulin into the medium was 600 molecules/min per hepatocyte with 1 nM labelled hormone, and increased (preincubation with cycloheximide) or decreased (tunicamycin) as a function of the amount of cell-bound insulin. Secondly, the percentage of cell-bound insulin degraded was not changed by the presence of protein-synthesis inhibitors (25-30%). The stability of insulin degradation suggested that this process was dependent on long-life proteinase systems. Such differences in degradation rates and cycloheximide sensitivity imply that hormone- and receptor-degradation processes utilize distinct pathways.  相似文献   

5.
The K 562 is a transformed human erythroid stemcell and is used as a target cell for NK-T-cells. In this study the presence of insulin receptors in K 562 is established.The best binding and negative cooperativity was found in the two Hepes containing buffers whereas no cooperativity was obtained in the Krebs-Ringer buffer. The calculated affinity constants and receptor number per cell varied according to the buffer. Preincubation with insulin caused a down-regulation of the insulin binding capacity. 10 ng/ml caused a lowering of the affinity, with an unchanged number of receptors. 100 ng/ml caused a decrease in receptor number with unchanged affinity. These results were found in both Hepes and Krebs-Ringer phosphate buffer. IGF-I shows cross-reactivity with the insulin receptor, with a potency of 12 and 100 times less than insulin in Krebs-Ringer phosphate buffer and G-buffer respectively. However, no specific IGF-I receptors were found.The presence of receptors on K 562 cells suggests a biological role for insulin. The different results in the different buffers, indicate that a buffer containing Hepes and/or Tris, is required to expose negative cooperativity and make the receptors more accessible to insulin.  相似文献   

6.
The presence of insulin receptor and its regulation by butyrate and other short-chain fatty acids was studied in C6 cells, a rat glioma cell line. Intact C6 cells bind 125I-insulin in a rapid, reversible and specific manner. Scatchard analysis of the binding data gives typical curvilinear plots with apparent affinities of approx. 6 nM and 70 nM for the low-affinity (approx. 90% of total) and high-affinity (approx. 10% of total) sites respectively. Incubation with butyrate results in a time- and dose-dependent decrease of insulin binding to C6 cells. A maximal effect was found with 2 mM-butyrate that decreased the receptor by 40-70% after 48 h. Butyrate decreased numbers of receptors of both classes, but did not significantly alter receptor affinity. Other short-chain fatty acids, as well as keto acids, had a similar effect, but with a lower potency. Cycloheximide caused an accumulation of insulin receptors at the cell surface, since insulin binding increased and receptor affinity did not change after incubation with the inhibitor. Simultaneous addition of butyrate and cycloheximide abolished the loss of receptors produced by the fatty acid. In cells preincubated with butyrate, cycloheximide also produced a large increase in receptor numbers, showing that in the absence of new receptor synthesis a large pool of receptors re-appears at the surface of butyrate-treated cells.  相似文献   

7.
In cultured cells derived from isolated micromeres of 16-cell stage sea urchin embryos, which undergo insulin-induced pseudopodial cable growth, specific and reversible insulin binding by a 52-kDa protein, probably an insulin receptor in the plasma membrane, is augmented during 5 h of culture without any change in the dissociation constant (Kuno et al : 1994). The increase in insulin-binding capacity in micromere-derived cells was only minimally blocked by actinomycin D and cycloheximide, which inhibited [U-3H]uridine incorporation into RNA and [35S]methionine incorporation into protein, respectively. Insulin binding capacity was found in the plasma membrane fraction and the microsome fraction of isolated micromeres. The capacity in the plasma membrane fraction increased, accompanied by its decrease in the microsome fraction, during 5 h of culture of micromere-derived cells. The insulin receptor is probably accumulated in microsomes of presumptive micromeres prior to the 16-cell stage and transferred to the plasma membrane, resulting in an increase in the insulin binding capacity of micromere-derived cells during 5 h of culture.  相似文献   

8.
To elucidate the regulation of vascular receptors for atrial natriuretic peptide (ANP), we have studied the binding capacity of 125I-labeled rat (r) ANP using cultured vascular smooth muscle cells from rat aorta. After preincubation with 3.2 X 10(-8) M rANP at 37 degrees C, the binding capacity decreased as a function of time; the maximal receptor loss (70-75%) occurred after 4 hrs and persisted for 24 hrs. Pretreatment with cycloheximide (20 micrograms/ml) and actinomycin D (2 micrograms/ml) similarly caused a dramatic reduction (approximately 80%) of the binding capacity after 24 hrs; the half-life (t1/2) of the receptor loss was approximately 7-8 hrs. Following removal of rANP, the "down-regulated" ANP receptors fully recovered in the presence of 10% fetal calf serum, but not in combination with either actinomycin D or cycloheximide. Concanavalin A dose-dependently inhibited the binding. The binding capacity also decreased with time in the presence of tunicamycin (1 microgram/ml) with t1/2 of approximately 30 hrs. These data indicate that protein and carbohydrate moieties are essential for the functional integrity of the vascular receptor binding sites for ANP, and suggest that the recovery of the receptor loss by "down-regulation" requires concomitant RNA and protein synthesis.  相似文献   

9.
Receptor down-regulation is the result of various cellular processes including receptor internalization, new synthesis, and recycling. Monensin, a monocarboxylic acid ionophore, has been used to characterize the role of recycling in the metabolism of insulin receptors on two cultured human cell lines, U-937 and IM-9, which have different rates of internalization. The U-937 monocyte-like cell internalizes insulin receptors readily. Incubation with monensin at low doses (10(-6) to 10(-7) M) for 2 h did not affect subsequent surface insulin binding. However, the drug markedly enhanced insulin-induced down-regulation. Monensin had little effect on ligand internalization in this cell line as demonstrated by quantitative morphometric analysis. The IM-9 lymphocyte, a slow internalizer, was less sensitive to monensin exposure. Prolonged exposure (12 h) to this compound of either cell line resulted in apparent inhibition of insertion into the surface membrane of both newly synthesized and recycled receptors. When solubilization was used to quantitate total cell receptors, there was essentially no difference in intact cell binding (i.e. surface receptors) and total cell binding in IM-9 cells when insulin-induced down regulation alone was compared to insulin and monensin. By contrast for the U-937 cells there was only a small further decrease in binding when monensin was added to insulin in the solubilized cells compared to the marked augmentation of down-regulation when monensin was added to insulin in intact cells. These data demonstrate that cells with a rapid internalization rate have an associated active recycling process. By contrast cells with a slow internalization rate have a similarly slow recycling rate. This is consistent with relatively equal rates of receptor biosynthesis and plasma membrane insertion in both cell types.  相似文献   

10.
We have studied the variations in the number of insulin receptor and insulin receptor mRNA levels in (Hep G2) cells in response to growth and insulin treatment. The levels of insulin receptors are relatively low in growing cells. After approximately 5 days in culture, if cells are not refed they cease to divide and the number of receptors/cell increases, reaching 4 times the initial values by the 9th day. Refeeding the cells completely prevented both growth arrest and the increase in insulin receptor number. Insulin added daily to cells at 0.33 microM caused receptor down-regulation but did not prevent a 3-fold increase in binding with growth arrest. Pulse-chase studies of metabolically labeled ([35S]methionine) cells showed that the receptor degradation rate (apparent t 1/2, 18-20 h) was comparable in rapidly growing versus growth-arrested cells. The increased receptor level in non-refed cells is not due to generation of a soluble factor by confluent cells, nor is it caused by depletion of insulin, glucose, or insulin-like growth factor I from the culture medium. The levels of insulin receptor mRNA measured on Northern blots increased in growth-arrested cells in parallel to the increase in receptor number. The mRNA value begins to increase from the 3rd day in culture and by the 9th day reaches a level 6.0 times that on the 3rd day. Chronic insulin-induced receptor down-regulation did not alter insulin receptor mRNA levels at any time point studied. These data demonstrate that the increase in insulin receptor number/cell in growth-arrested cells is paralleled by an increase in insulin receptor mRNA content with no change in the receptor degradation rates. This suggests that the increase in the number of insulin receptors is due to enhanced receptor synthesis due to increased receptor mRNA content. Conversely, down-regulation of the insulin receptor does not affect the level of insulin receptor mRNA and thus must be due to increased receptor degradation.  相似文献   

11.
12.
The mechanism of insulin-induced down-regulation of surface membrane insulin receptors was studied in the muscle cell line BC3H-1. Down-regulation for the differentiated myocytes is dose- and time-dependent with a half-maximum response at 0.5 nM insulin and a maximum decrease of 50% in the number of surface insulin receptors following exposure to 20 nM insulin for 18 h at 37 degrees C, as confirmed by Scatchard analysis. These receptors were fully recoverable upon lysis of the down-regulated myocyte with Triton X-100, demonstrating that down-regulation is mediated solely by insulin-induced receptor internalization without detectable receptor degradation. Phospholipase C treatment of intact down-regulated cells and Triton X-100 treatment after subcellular fractionation showed that no cryptic or masked receptors were detectable within the plasma membrane. Insulin-induced receptor internalization was dependent upon cellular energy production, protein synthesis, and endocytosis, but was insensitive to agents which primarily affect lysosomal, cytoskeletal, or transglutaminase activities. The magnitude of insulin-induced down-regulation and the kinetics of down-regulation and recovery of cell surface receptors indicate that the surface and internal receptor pools are in dynamic equilibrium with each other. The kinetic data are accommodated by separate internalization rate constants for the unoccupied (0.01 h-1) and occupied (0.11 h-1) surface receptors and a single recycling rate constant (0.11 h-1) for the internalized receptors. This model also explains the previous apparently paradoxical finding in several other systems that down-regulation is more sensitive to hormone than hormone-receptor binding under physiologic conditions. Down-regulation in BC3H-1 myocytes, therefore, appears to be mediated solely by an insulin-induced increase in the receptor internalization rate constant and a consequent shift in the dynamic equilibrium between the surface and internalized receptor pools, resulting in a 50% decrease in the number of cell surface receptors. In other systems where the internalized hormone receptor is a substrate for rapid degradation, the essential role of this shift in mediating the down-regulation process may be obscured.  相似文献   

13.
Long-term treatment of NCB-20 cells with sodium butyrate resulted in a marked increase in the specific binding of [3H]D-Ala2,D-Leu5 enkephalin. This increase was concentration and time dependent, with an EC50 of about 480 microM and a maximal effect detected after 3-day treatment. At saturating concentration of butyrate (1 mM) the increase was three- to fourfold of the untreated control. Scatchard analysis revealed that the butyrate effect was due to an increase in the density of the opioid receptor binding sites. Butyrate also induced a smaller (about twofold) increase in the density of muscarinic cholinergic receptor binding assessed by using [3H]quinuclidinyl benzilate, whereas alpha 2-adrenergic receptor binding assessed by using [3H]clonidine was not significantly affected. The butyrate-induced opioid receptor binding could be totally abolished by the presence of cycloheximide, suggesting that the butyrate effect involves synthesis of the receptor protein. Butyrate treatment did not affect basal and prostaglandin E1-stimulated cyclic AMP levels but caused a three- to fourfold decrease in the IC50 of D-Ala2,D-Leu5 enkephalin for attenuating these cyclic AMP levels and approximately 25% increase in the maximal extent of attenuation. In contrast to the butyrate effect, long-term treatment of NCB-20 cells with 1 mM dibutyryl cyclic AMP induced an 80% decrease in the opioid and alpha 2-adrenergic receptor bindings and a 57% loss of muscarinic cholinergic receptor binding. This down-regulation of muscarinic cholinergic receptor binding sites was associated with a 35% decrease of carbachol-induced phosphoinositide breakdown, whereas the receptor up-regulation induced by butyrate was found to increase the carbachol response by about threefold. The differential regulation by butyrate and dibutyryl cyclic AMP suggests that the butyrate effect is mediated by a mechanism independent of intracellular cyclic AMP. The induction by butyrate of opioid-receptors and muscarinic cholinergic receptors in NCB-20 cells may provide a useful system for studying the regulation of gene expression of these receptor proteins.  相似文献   

14.
Characteristics of insulin binding to H35 hepatoma cells   总被引:1,自引:0,他引:1  
C P de Vries  E A Van der Veen 《Biochimie》1985,67(10-11):1191-1194
Well differentiated hepatoma cells in culture exhibit insulin binding and insulin effects. We have studied insulin binding in control and in H35 hepatoma cells down-regulated with insulin. H35 cells were grown in monolayers in alpha MEM. Insulin binding was measured with A14 mono 125I labelled insulin 72 h after seeding. Binding was time, temperature and pH-dependent. Receptor down-regulation was studied by exposing cells to increasing concentrations of unlabelled insulin. Monolayers preincubated with 10 micrograms/ml unlabelled insulin for 24 h showed a decrease of 65% in the number of insulin binding sites. There was no change in affinity.  相似文献   

15.
To examine a possible role for IGF-II in the regulation of IGF-I receptors we measured 125I-IGF-I binding on IM-9 cells following pre-incubation with IGF-II/IGF-I mixtures, purified MSA (a rat IGF-II-like peptide), pure IGF-I, or insulin. Whereas all preparations tested induced down-regulation of IGF-I binding after 20 hours, distinct differences were noted after six hour pre-incubation: IGF-I (100 ng/ml) and insulin (1 microgram/ml) both induced down-regulation of IGF-I binding (15 +/- 2% and 19 +/- 2% respectively). However, a mixture of IGF-II and IGF-I (100 ng/ml each) induced consistent up-regulation of IGF-I binding (16 +/- 2%) (mean +/- SE, n = 14), and a preparation enriched in IGF-II (250 ng/ml IGF-II and 75 ng/ml IGF-I) induced 20 +/- 5% (n = 3) up-regulation at six hours. Purified MSA (200 ng/ml) induced 15% up-regulation of IGF-I binding at six hours. Scatchard analysis of displacement curves showed that increased binding was due to loss of low affinity binding, with enhancement of high affinity sites. The up-regulation of IGF-I binding was unaffected by treatment with 0.1 mM cycloheximide, but was blunted by 5 microM colchicine. It is concluded that 1. IGF-II induces up-regulation of IGF-I receptors on IM-9 cells following 6 hour pre-incubation; 2. This phenomenon is not mimicked by the structurally-related peptides IGF-I or insulin; The up-regulation is due to enhanced high affinity binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Rat adipocytes were incubated with 15 nM insulin in different buffers at 37°C. The cells were washed and reincubated at 16°C in the presence of 18 pM A14-[125I]monoiodoinsulin to determine the insulin receptor concentration. After incubation for 2 h in Tris buffer the binding decreased to about 30 %, whereas no decrease was found after incubation in Hepes, phosphate or bicarbonate buffers. Binding of tracer insulin reached a constant level by 45 min in Hepes buffer at 37°C, whereas it continued to increase in Tris buffer. Washout of tracer insulin after incubation in Tris buffer at 37°C showed a large, slowly dissociable fraction. It is suggested that the rapid down regulation of insulin receptors invitro is an artifact of the Tris buffer and that the phenomenon is due to a slowly reversible occupancy of a receptor pool with unlabelled insulin.  相似文献   

17.
The identity of specific serine phosphorylation residues of insulin receptor substrate (IRS)-2 and their impact on insulin signal transduction are largely unknown. Ser(675) and Ser(907) of mouse IRS-2 are adjacent to PI 3-kinase or Grb2 binding domains, respectively. Using monoclonal phosphosite-specific antibodies, we demonstrated the phosphorylation of both serines after stimulation of Fao hepatoma cells with insulin, anisomycin, or phorbol esters. Phosphorylation of both sites was a late and prolonged event during insulin treatment and was also detected in liver tissue of insulin-treated as well as refed mice. Inhibition and siRNA-mediated knockdown of ERK1/2 indicated that the insulin-induced phosphorylation of Ser(907) was ERK dependent. Phosphorylation of Ser(907) did not prevent the insulin-induced association of IRS-2 with Grb2, but phosphorylation of the adjacent Tyr(911) was proved to be crucial in HEK 293 cells expressing IRS-2 Ala mutants. The insulin-induced phosphorylation of Ser(675) was prevented by inhibition and siRNA-mediated knockdown of mTOR but not of p70(S6K1). Mutation of Ser(675) to Ala did not affect downstream insulin signaling but increased the half-life of the protein, suggesting an involvement of phospho-Ser(675) in an accelerated degradation of IRS-2. Moreover, the insulin-induced degradation of IRS-2 was blocked by inhibition of mTOR. We conclude that the two novel insulin-dependent serine phosphorylation sites of IRS-2 were not involved in the regulation of the adjacent PI 3-kinase and Grb2 binding domains but might be implicated in the ERK- and mTOR-mediated negative feedback control.  相似文献   

18.
The dissociation of insulin from its receptor is reportedly enhanced when the dissociation is induced by dilution in the presence of insulin. This experiment is frequently conducted when curvilinear Scatchard plots of insulin binding are observed in order to infer negative cooperative site-site interactions amongst insulin receptors. However, when insulin binding to purified liver plasma membranes was measured at 15 degrees C in 50 mM Tris, pH 7.5 containing 0.1% bovine serum albumin and 100 U/ml bacitracin, the insulin binding data was characterised by a linear Scatchard plot and a Hill plot with a slope equal to unity. Thus, under the conditions of this binding assay, insulin apparently bound to a single non-interacting class of homogeneous binding sites. But, despite the apparent absence of cooperative interactions under these specific conditions, the dissociation of receptor-bound insulin was still enhanced when the dissociation of insulin from its receptor was induced by dilution in the presence of insulin. This result cast serious doubt on the validity of inferring negative-cooperative site-site interactions amongst insulin receptors based solely on the observation that the dissociation of receptor-bound insulin is enhanced by dilution in the presence of insulin.  相似文献   

19.
Treatment of cultured human skin fibroblasts with cycloheximide retarded the down-regulation of low density lipoprotein (LDL) receptor activity caused by 25-hydroxycholesterol. The rate of LDL receptor degradation, measured directly by means of [35S]methionine pulse-chase experiments, was also markedly inhibited by cycloheximide (or puromycin), suggesting that continuous synthesis of a short-lived mediator protein(s) was necessary for normal LDL receptor turnover. In the absence of cycloheximide, both the up- and down-regulation of LDL receptor activity took place with a half-time of approximately 12 hr. Pulse-chase measurements with [35S]methionine yielded a receptor half-life (t1/2) of 11.7 +/- 2.2 hr (n = 10) in up-regulated cells; the t1/2 in the partially down-regulated state was similar. The presence of LDL or 25-hydroxycholesterol did not alter this degradation rate. Regulation of LDL receptor activity under these various culture conditions therefore probably occurred solely as a result of changes in the rate of receptor synthesis. The cycloheximide-sensitive factor(s) that influences receptor turnover apparently did not play a regulatory role in the up- or down-regulation of the LDL receptor.  相似文献   

20.
To determine the effect of insulin on its receptor concentrations in hepatocytes of fetal and adult rats, these cells were preincubated in the presence or absence of insulin. The reduced [125I]-insulin binding observed in adult hepatocytes was dependent on the concentration of insulin and on the duration of exposure, while in fetal hepatocytes insulin did not induce any reduction in insulin binding. In contrast, glucagon receptors were unaffected by preincubation with insulin. The modifications observed in insulin binding were accounted for by changes in receptor concentrations rather than any change in receptor affinity for the hormone. Studies on the kinetic properties of the insulin receptors of fetuses and adult rats revealed that association and dissociation rates were undistinguishable. These results indicate an absence of insulin receptor down-regulation in the fetus, which could favour anabolic processes during intrauterine life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号