首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dengue is a serious disease transmitted by the mosquito Aedes aegypti during blood meal feeding. It is estimated that the dengue virus is transmitted to millions of individuals each year in tropical and subtropical areas. Dengue control strategies have been based on controlling the vector, Ae. aegypti, using insecticide, but the emergence of resistance poses new challenges. The aim of this study was the identification of specific protease inhibitors of the digestive enzymes from Ae. aegypti larvae, which may serve as a prospective alternative biocontrol method. High affinity protein inhibitors were selected by all of the digestive serine proteases of the 4th instar larval midgut, and the specificity of these inhibitors was characterized. These inhibitors were obtained from a phage library displaying variants of HiTI, a trypsin inhibitor from Haematobia irritans, that are mutated in the reactive loop (P1–P4′). Based on the selected amino acid sequence pattern, seven HiTI inhibitor variants were cloned, expressed and purified. The results indicate that the HiTI variants named T6 (RGGAV) and T128 (WNEGL) were selected by larval trypsin-like (IC50 of 1.1 nM) and chymotrypsin-like enzymes (IC50 of 11.6 nM), respectively. The variants T23 (LLGGL) and T149 (GGVWR) inhibited both larval chymotrypsin-like (IC50 of 4.2 nM and 29.0 nM, respectively) and elastase-like enzymes (IC50 of 1.2 nM for both). Specific inhibitors were successfully obtained for the digestive enzymes of Ae. aegypti larvae by phage display. Our data also strongly suggest the presence of elastase-like enzymes in Ae. aegypti larvae. The HiTI variants T6 and T23 are good candidates for the development as a larvicide to control the vector.  相似文献   

2.
3.
4.
In holometabolous insects such as mosquito, Aedes aegypti, midgut undergoes remodeling during metamorphosis. Insect metamorphosis is regulated by several hormones including juvenile hormone (JH) and 20-hydroxyecdysone (20E). The cellular and molecular events that occur during midgut remodeling were investigated by studying nuclear stained whole mounts and cross-sections of midguts and by monitoring the mRNA levels of genes involved in 20E action in methoprene-treated and untreated Ae. aegypti. We used JH analog, methoprene, to mimic JH action. In Ae. aegypti larvae, the programmed cell death (PCD) of larval midgut cells and the proliferation and differentiation of imaginal cells were initiated at about 36h after ecdysis to the 4th instar larval stage (AEFL) and were completed by 12h after ecdysis to the pupal stage (AEPS). In methoprene-treated larvae, the proliferation and differentiation of imaginal cells was initiated at 36h AEFL, but the PCD was initiated only after ecdysis to the pupal stage. However, the terminal events that occur for completion of PCD during pupal stage were blocked. As a result, the pupae developed from methoprene-treated larvae contained two midgut epithelial layers until they died during the pupal stage. Quantitative PCR analyses showed that methoprene affected midgut remodeling by modulating the expression of ecdysone receptor B, ultraspiracle A, broad complex, E93, ftz-f1, dronc and drice, the genes that are shown to play key roles in 20E action and PCD. Thus, JH analog, methoprene acts on Ae. aegypti by interfering with the expression of genes involved in 20E action resulting in a block in midgut remodeling and death during pupal stage.  相似文献   

5.
The existence of a diverse trypsin gene family with a main role in the proteolytic digestion process has been proved in vertebrate and invertebrate organisms. In lepidopteran insects, a diversity of trypsin-like genes expressed in midgut has also been identified. Genomic DNA and cDNA trypsin-like sequences expressed in the Mediterranean corn Borer (MCB), Sesamia nonagrioides, midgut are reported in this paper. A phylogenetic analysis revealed that at least three types of trypsin-like enzymes putatively involved in digestion are conserved in MCB and other lepidopteran species. As expected, a diversity of sequences has been found, including four type-I (two subtypes), four type-II (two subtypes) and one type-III. In parallel, four different trypsins have been purified from midgut lumen of late instar MCB larvae. N-terminal sequencing and mass spectrometric analyses of purified trypsins have been performed in order to identify cDNAs coding for major trypsins among the diversity of trypsin-like sequences obtained. Thus, it is revealed that the four purified trypsins in MCB belong to the three well-defined phylogenetic groups of trypsin-like sequences detected in Lepidoptera. Major active trypsins present in late instar MCB lumen guts are trypsin-I (type-I), trypsin-IIA and trypsin-IIB (type-II), and trypsin-III (type-III). Trypsin-I, trypsin-IIA and trypsin-III showed preference for Arg over Lys, but responded differently to proteinaceous or synthetic inhibitors. As full-length cDNA clones coding for the purified trypsins were available, three-dimensional protein models were built in order to study the implication of specific residues on their response to inhibitors. Thus, it is predicted that Arg73, conserved in type-I lepidopteran trypsins, may favour reversible inhibition by the E-64. Indeed, the substitution of Val213Cys, unique for type-II lepidopteran trypsins, may be responsible for their specific inhibition by HgCl2. The implication of these results on the optimisation of the use of protease inhibitors for pest control, and on the identification of endoprotease-mediated resistance to Bacillus thuringiensis Cry-toxins is discussed.  相似文献   

6.
Proteolytic enzyme biosynthesis in the midgut of the 4th instar larva of Heliothis virescens is cyclical. Protease activity increases immediately after the molt from the 3rd to the 4th instar larvae and declines just before the molt into the 5th instar. Characterization of the midgut proteases using soybean tryspin inhibitor (SBTI) Bowman Birk Inhibitor (BBI) 4-(2-aminoethyl)benzensulfonylfluoride (AEBSF) and N-tosyl-L-phenylalanine chloromethylketone (TPCK) indicate that protease activity is mostly trypsinlike (80%) with a small amount of chymotrypsinlike activity (20%). Injections of late 3rd and 4th instar larval hemolymph into H. virescens larvae inhibited tryspin biosynthesis in the larval midgut. Similar results were obtained when highly purified 4th instar larval hemolymph that crossreacted with Aea-TMOF antisurm using ELISA was injected into 2nd instar larvae. Injections of Aea-TMOF and its analogues into 2nd instar, and Aea-TMOF alone into 4th instar larvae stopped trypsin biosynthesis 24 and 48 h after the injections, respectively. Injections of 4th instar H. virescens larval hemolymph into female Aedes aegypti that took a blood meal stopped trypsin biosynthesis and egg development. These results show that the biosynthesis of trypsin-like enzymes in the midgut of a lepidoptera is modulated with a hemolymph circulating TMOF-like factor that is closely related to Aea-TMOF. Arch.  相似文献   

7.
Summary A polyclonal antibody was raised against trypsin purified from the midgut of blood-fed Aedes aegypti. Using this antibody and our modification of the peroxidase-antiperoxidase immunocytochemical reaction, strong activity was found in the lumen of the midgut at the light-microscopical level. The activity was localized mainly in the posterior part of the distensible, abdominal midgut, along the periphery of the blood bolus and within the peritrophic membrane. Immunoreactivity appeared 8 h after the blood meal and was most prominent around 24 h, coinciding with our previous spectrophotometric determinations of trypsin.At the electron-microscopical level, secretory granules, immunocytochemically labelled with anti-trypsin antibody and protein A-colloidal gold, were first detected about 12 h after the blood meal. At 18 h, the secretory pathway could be followed immunocytochemically from the formation of granules in the Golgi complex until their release by exocytosis in the midgut lumen. By 24 h, there was a reduction in secretory granules, and large lysosomes appeared.The process of secretion described for this mosquito is comparable to similar events in vertebrate secretory systems and the presence of an intracellular trypsinogen is suggested.  相似文献   

8.
9.
Plants synthesize a variety of molecules to defend themselves against an attack by insects. Talisin is a reserve protein from Talisia esculenta seeds, the first to be characterized from the family Sapindaceae. In this study, the insecticidal activity of Talisin was tested by incorporating the reserve protein into an artificial diet fed to the velvetbean caterpillar Anticarsia gemmatalis, the major pest of soybean crops in Brazil. At 1.5% (w/w) of the dietary protein, Talisin affected larval growth, pupal weight, development and mortality, adult fertility and longevity, and produced malformations in pupae and adult insects. Talisin inhibited the trypsin-like activity of larval midgut homogenates. The trypsin activity in Talisin-fed larvae was sensitive to Talisin, indicating that no novel protease-resistant to Talisin was induced in Talisin-fed larvae. Affinity chromatography showed that Talisin bound to midgut proteinases of the insect A. gemmatalis, but was resistant to enzymatic digestion by these larval proteinases. The transformation of genes coding for this reserve protein could be useful for developing insect resistant crops.  相似文献   

10.
Screening of Aspergillus funiculosus for bioactive secondary metabolites produced kojic acid, which is know to have wide range of biological properties. It is very active against Gram-negative bacteria, such as Pseudomonas aeruginosa and Escherichia coli, but moderately active against yeasts and Gram-positive bacteria except Staphylococcus epidermidis. Filamentous Fungi are more sensitive to kojic acid. When it exposed to larvicidal activity on Aedes aegypti third instar larvae are more sensitive than early fourth instar larvae.  相似文献   

11.
Oenocytes are ectodermic cells that participate in a number of critical physiological roles such as detoxification and lipid storage and metabolism in insects. In light of the lack of information on oenocytes from Aedes aegypti and the potential role of these cells in the biology of this major yellow fever and dengue vector, we developed a protocol to purify and maintain Ae. aegypti pupa oenocytes in primary culture. Ae. aegypti oenocytes were cultured as clustered and as isolated ovoid cells with a smooth surface. Our results demonstrate that these cells remain viable in cell culture for at least two months. We also investigated their morphology in vivo and in vitro using light, confocal, scanning and transmission electron microscopes. This work is the first successful attempt in isolating and maintaining Ae. aegypti oenocytes in culture, and a significant step towards understanding the role of this cell type in this important disease vector. The purification and the development of primary cultures of insect oenocytes will allow future studies of their metabolism in producing and secreting compounds.  相似文献   

12.
Density dependent responses of 4th, 5th and 6th instar gypsy moth larvae were studied at the level of larval mass, midgut loading and activities of three digestive enzymes (alpha-amylase, trypsin and leucine aminopeptidase). High density significantly reduced larval mass while midgut loading (expressed as relative midgut mass) did not change except in the 5th instar where it was increased at high density. Specific amylase and leucine aminopeptidase activities were not affected by crowding. Specific trypsin activity was on average higher in crowded than in isolated larvae. High density also affected the correlations between midgut protein content and activities of two proteolytic enzymes suggesting differences in regulatory mechanisms of insect digestion. The importance of these changes for survival under stressful conditions is discussed.  相似文献   

13.
These studies focus on the pupal Aedes aegypti midgut muscularis for the first 26 h following larval-pupal transition. The midgut muscularis of Ae. aegypti pupae during this first half of the pupal stadium is a grid of both circularly and longitudinally oriented muscle bands, arranged in a manner resembling that of the larvae. While many muscle bands exhibit signs of degeneration during the time period studied, not all bands degrade, nor is this degradation simultaneous. Band deterioration involves destruction of internal elements while the muscle fiber plasma membrane remains intact. Deterioration of contractile elements may involve proteosome-like structures and associated enzymes. Many features of the larval muscularis including cruciform cells, bifurcating circular bands, and bifurcating longitudinal bands of muscle are retained during the time period investigated. Neuromuscular junctions along some muscle bands are retained through at least 16 h into the pupal stadium. The selective nature of muscle fiber degradation, coupled with the retention of larval features and neural input, may allow for limited functionality of the muscularis during metamorphosis. Evidence of sexual dimorphism in the midgut muscularis of male and female Ae. aegypti pupae was not observed during the time period studied.  相似文献   

14.
15.
Two digestive trypsin-like proteinases from Sesamia nonagrioides Lef. (Lepidoptera: Noctuidae) larvae were purified by benzamidine-Sepharose affinity chromatography. The purified enzymes showed molecular size of 27 (trypsin-I) and 24 KDa (trypsin-II). Amino acid analysis and N-terminal sequencing confirmed their relationship with other trypsins from lepidopteran larvae. However, trypsin-I presented one lysine at position 11, being the first report of this amino acid in the sequence of a lepidopteran digestive trypsin. Trypsin-I had an isoelectric point of 6.0, and a Km of 2.2 x 10(-4) M and 3.9 x 10(-5) M for BApNa and BAEE, respectively. Trypsin-II presented an isoelectric point of 8.7, and Km values of 1.7 x 10(-4) M (BApNa) and 3.8 x 10(-5) M (BAEE). Both enzymes were differentially inhibited by some proteinase inhibitors. In particular, trypsin-I was inhibited by E-64 (ID50 = 6 microM) but not by lima bean trypsin inhibitor (LBI), whereas trypsin-II was inhibited by LBI (ID50 = 1 microM) and poorly by E-64 (ID50 = 85 microM). Changes in the susceptibility of the trypsin-like activity of midgut extracts from different larval instars to these inhibitors suggest that the relative proportion of these two enzymes varied through larval development, being predominant in early instars trypsin-I and in late instars trypsin-II.  相似文献   

16.
Glutathione S-transferase (GST) from the 4th instar larvae of the dengue vector Aedes albopictus was purified by glutathione-agarose affinity chromatography and characterised using SDS-PAGE. The expression of the purified enzyme in the life stages and insecticide treated populations of Ae. albopictus as well as its cross-reactivity with larval GST of two dipteran species Aedes aegypti and Batrocera papayae were observed using western blotting. The purified GST had a specific activity of 196.0 ± 11 μmol/min/mg with a purification fold and yield of 28 and 69%, respectively. The SDS-PAGE analysis of the purified GST depicted a single band size of 23 kDa. The GST was expressed in all the larval and adult stages of Ae. albopictus with the exception of the pupal stage. However, the expression level in the adult stage was visibly reduced as compared to the larval stages. Western blotting analysis showed no cross-reactivity with the GST of Ae. aegypti (4th instar) and B. papayae (3rd instar) larvae. The expression of this enzyme was not inducible by exposure to the insecticides dichlorodiphenyltrichloroethane (1.25 mg/L) and malathion (0.3125 mg/L).  相似文献   

17.
The paper describes the bio efficacy of a protease inhibitor; isolated from Allium sativumgarlic’ (ASPI); against Aedes aegypti mosquito, a well-known transmitter of dengue and Chikungunya. The purification of protease inhibitor from Allium sativumgarlic’ (ASPI) was carried out by ammonium sulfate precipitation followed by Fast Protein Liquid Chromatography using akta DEAE-Cellulose column. The protein fraction demonstrating trypsin inhibitory activity was further evaluated for its insecticidal activity using gut protease inhibition assay and larvicidal assay. ASPI is an inhibitor of porcine trypsin (IC50 of 650.726?μg/mL) and has molecular weight of ~15?kDa determined by SDS PAGE similar to other inhibitors of the Kunitz-type family (14–26?kDa). ASPI demonstrated 50% reduced activity of Ae. aegypti midgut proteases and showed a dose-dependent acute toxicity on Ae. aegypti 3rd instars exhibiting LC50 value of ~50.827?μg/mL. After ten days of larval exposure ASPI resulted in a 24-h delay of larval development and ~72% mortality at 61.5?μg/mL. These results suggest that ASPI may serve as potent insecticidal agent and hence opens a new gateway in the field of phyto-remediation.  相似文献   

18.
A trypsin inhibitor was isolated from Cassia obtusifolia by ammonium sulfate precipitation, Sepharose 4B-trypsin affinity and Sephadex G-75 chromatography. The inhibitor consisted of a single polypeptide chain with a molecular mass of 19, 812.55 Da. It was stable from pH 2 to 12 for 24 h, whereas it was unstable either above 70°C for 10 min or under reduced conditions. The inhibitor, which inhibited trypsin activity with an apparent Ki of 0.3 μM, had one reactive site involving a lysine residue. The native inhibitor was resistant to pepsin digestion, whereas the heated inhibitor produced 40% degree of susceptibility. The disulfide linkage and lysine residue were important in maintaining its conformation. Partial amino acid sequence of the purified protein showed a high degree of homology with various members of the Kunitz inhibitor family. Moreover, the inhibitor showed significant inhibitory activity against trypsin-like proteases present in the larval midgut on Pieris rapae and could suppress the growth of larvae.  相似文献   

19.
Midgut digestive amylases and proteinases of Helicoverpa armigera, a polyphagous and devastating insect pest of economic importance have been studied. We also identified the potential of a sorghum amylase inhibitor against H. armigera midgut amylase. Amylase activities were detected in all the larval instars, pupae, moths and eggs; early instars had lower amylase levels which steadily increased up to the sixth larval instar. Qualitative and quantitative differences in midgut amylases of H. armigera upon feeding on natural and artificial diets were evident. Natural diets were categorized as one or more members of legumes, vegetables, flowers and cereals belonging to different plant families. Amylase activity and isoform patterns varied depending on host plant and/or artificial diet. Artificial diet-fed H. armigera larvae had comparatively high amylase activity and several unique amylase isoforms. Correlation of amylase and proteinase activities of H. armigera with the protein and carbohydrate content of various diets suggested that H. armigera regulates the levels of these digestive enzymes in response to macromolecular composition of the diet. These adjustments in the digestive enzymes of H. armigera may be to obtain better nourishment from the diet and avoid toxicity due to nutritional imbalance. H. armigera, a generalist feeder experiences a great degree of nutritional heterogeneity in its diet. An investigation of the differences in enzyme levels in response to macronutrient balance and imbalance highlight their importance in insect nutrition.  相似文献   

20.
Autoproteolytic stability is a crucial factor for the application of proteases in biotechnology. In contrast to vertebrate enzymes, trypsins from shrimp and crayfish are known to be resistant against autolysis. We show by characterisation of a novel trypsin from the gastric fluid of the marine crab Cancer pagurus that this property might be assigned to the entire class of crustaceans. The isolated and cloned crab trypsin (C.p.TryIII) exhibits all characteristic properties of crustacean trypsins. However, its overall sequence identity to other trypsins of this systematic class is comparatively low. The high resistance against autoproteolysis was determined by mass spectrometry, which revealed a low susceptibility of the N-terminal domain towards autolysis. By homology modelling of the tertiary structure, the elevated stability was attributed to the distinctly different pattern of autolytic cleavage sites, which is conserved in all known crustacean trypsin sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号