首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Gheusi G  Lledo PM 《Chemical senses》2007,32(4):397-409
The mature brain needs to have flexible control over behavior in the face of ever-changing needs. It achieves this control through morphological and physiological changes at the level of molecules, spines, dendrites, and axons and through processes of adult neurogenesis, entire cells. The functional maturation of newly generated cells in the adult forebrain involves the expression of neurotransmitter receptors before synaptic activity and excitatory gamma-aminobutyric acid (GABAergic) influences prior to glutamatergic input. The production of new cells for incorporation into neural circuits that are already up and running gives rise to a unique situation that may require epigenetic regulation. However, once mature, new neurons must carve out a niche among more established cells to be useful. How do they survive and what are they used for? Recent studies have revealed that adult neurogenesis alters the olfactory bulb at all levels, from single cells to the network and system levels. It has also been suggested that cell turnover may be particularly beneficial for the processing of new information in dynamic networks. However, elucidating the functional meaning of adult neurogenesis must wait for the development of new paradigms to eliminate the pool of newly generated neurons but sparing the preexisting ones. Nevertheless, there is already considerable correlative evidence to indicate that adult neurogenesis is a plastic mechanism by which the performance of the brain can be optimized in a given environment.  相似文献   

4.
The dentate gyrus (DG) of the hippocampus has a central role in learning and memory in adult rodents. The DG is generated soon after birth, although new neurons continue to be generated in the DG throughout life. The proneural factors Mash1 (Ascl1) and neurogenin 2 (Ngn2) are expressed during formation of the DG but their role in the development of this structure has not yet been addressed. Here, we show that Ngn2 is essential for the development of the DG. Ngn2 mutant mice have fewer DG progenitors and these cells present defects in neuronal differentiation. By contrast, the DG is normal in Mash1 mutant mice at birth, and loss of both Mash1 and Ngn2 does not aggravate the defect observed in Ngn2 single mutants. These data establish a unique role of Ngn2 in DG neurogenesis during development and raise the possibility that Ngn2 has a similar function in adult neurogenesis.  相似文献   

5.
Jin K  Minami M  Xie L  Sun Y  Mao XO  Wang Y  Simon RP  Greenberg DA 《Aging cell》2004,3(6):373-377
The adult mammalian brain retains the capacity for neurogenesis, by which new neurons may be generated to replace those lost through physiological or pathological processes. However, neurogenesis diminishes with aging, and this casts doubt on its feasibility as a therapeutic target for cell replacement therapy in stroke and neurodegenerative disorders, which disproportionately affect the aged brain. In previous studies, neurogenesis was stimulated by cerebral ischemia in young rodents, and the neurogenesis response of the aged rodent brain to physiological stimuli, such as hormonal manipulation and growth factors, was preserved. To investigate the effect of aging on ischemia-induced neurogenesis, transient (60 min) middle cerebral artery occlusion was induced in young adult (3-month) and aged (24-month) rats, who were also given bromodeoxyuridine to label newborn cells. As found in prior studies, basal neurogenesis in control, nonischemic rats was reduced with aging. Ischemia failed to stimulate neurogenesis in the dentate gyrus (DG) subgranular zone (SGZ), in contrast to results obtained previously after more prolonged (90-120 min) middle cerebral artery occlusion, but increased the number of BrdU-labeled cells in the forebrain subventricular zone (SVZ). This effect was less prominent in aged than in young adult rats, with fold-stimulation of BrdU incorporation reduced by approximately 20% and the total number of cells generated diminished by approximately 50%. BrdU-labeled cells in SVZ coexpressed neuronal lineage markers, consistent with newborn neurons. We conclude that ischemia-induced neurogenesis occurs in the aged brain, and that measures designed to augment this phenomenon might have therapeutic applications.  相似文献   

6.
Proinflammatory factors from activated T cells inhibit neurogenesis in adult animal brain and cultured human fetal neural stem cells (NSC). However, the role of inhibition of neurogenesis in human neuroinflammatory diseases is still uncertain because of the difficulty in obtaining adult NSC from patients. Recent developments in cell reprogramming suggest that NSC may be derived directly from adult fibroblasts. We generated NSC from adult human peripheral CD34+ cells by transfecting the cells with Sendai virus constructs containing Sox2, Oct3/4, c-Myc and Klf4. The derived NSC could be differentiated to glial cells and action potential firing neurons. Co-culturing NSC with activated autologous T cells or treatment with recombinant granzyme B caused inhibition of neurogenesis as indicated by decreased NSC proliferation and neuronal differentiation. Thus, we have established a unique autologous in vitro model to study the pathophysiology of neuroinflammatory diseases that has potential for usage in personalized medicine.  相似文献   

7.
Neurogenesis in the adult hippocampus   总被引:1,自引:0,他引:1  
New neurons continue to be generated in two privileged areas of the adult brain: the dentate gyrus of the hippocampal formation and the olfactory bulb. Adult neurogenesis has been found in all mammals studied to date, including humans. The process of adult neurogenesis encompasses the proliferation of resident neural stem and progenitor cells and their subsequent differentiation, migration, and functional integration into the pre-existing circuitry. This article summarizes recent findings regarding the developmental steps involved in adult hippocampal neurogenesis and the possible functional roles that new hippocampal neurons might play.  相似文献   

8.
Curcumin is a natural phenolic component of yellow curry spice, which is used in some cultures for the treatment of diseases associated with oxidative stress and inflammation. Curcumin has been reported to be capable of preventing the death of neurons in animal models of neurodegenerative disorders, but its possible effects on developmental and adult neuroplasticity are unknown. In the present study, we investigated the effects of curcumin on mouse multi-potent neural progenitor cells (NPC) and adult hippocampal neurogenesis. Curcumin exerted biphasic effects on cultured NPC; low concentrations stimulated cell proliferation, whereas high concentrations were cytotoxic. Curcumin activated extracellular signal-regulated kinases (ERKs) and p38 kinases, cellular signal transduction pathways known to be involved in the regulation of neuronal plasticity and stress responses. Inhibitors of ERKs and p38 kinases effectively blocked the mitogenic effect of curcumin in NPC. Administration of curcumin to adult mice resulted in a significant increase in the number of newly generated cells in the dentate gyrus of hippocampus, indicating that curcumin enhances adult hippocampal neurogenesis. Our findings suggest that curcumin can stimulate developmental and adult hippocampal neurogenesis, and a biological activity that may enhance neural plasticity and repair.  相似文献   

9.
Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between 'neurogenic' and 'non-neurogenic' regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions-the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease.  相似文献   

10.
The piriform cortex receives input from the olfactory bulb and (via the entorhinal cortex) sends efferents to the hippocampus, thereby connecting the two canonical neurogenic regions of the adult rodent brain. Doublecortin (DCX) is a cytoskeleton-associated protein that is expressed transiently in the course of adult neurogenesis. Interestingly, the adult piriform cortex, which is usually considered non-neurogenic (even though some reports exist that state otherwise), also contains an abundant population of DCX-positive cells. We asked how similar these cells would be to DCX-positive cells in the course of adult hippocampal neurogenesis. Using BAC-generated transgenic mice that express GFP under the DCX promoter, we studied DCX-expression and electrophysiological properties of DCX-positive cells in the mouse piriform cortex in comparison with the dentate gyrus. While one class of cells in the piriform cortex indeed showed features similar to newly generated immature granule neurons, the majority of DCX cells in the piriform cortex was mature and revealed large Na+ currents and multiple action potentials. Furthermore, when proliferative activity was assessed, we found that all DCX-expressing cells in the piriform cortex were strictly postmitotic, suggesting that no DCX-positive "neuroblasts" exist here as they do in the dentate gyrus. We conclude that DCX in the piriform cortex marks a unique population of postmitotic neurons with a subpopulation that retains immature characteristics associated with synaptic plasticity. DCX is thus, per se, no marker of neurogenesis but might be associated more broadly with plasticity.  相似文献   

11.
The mammalian hippocampus shows a remarkable capacity for continued neurogenesis throughout life. Newborn neurons, generated by the radial neural stem cells (NSCs), are important for learning and memory as well as mood control. During aging, the number and responses of NSCs to neurogenic stimuli diminish, leading to decreased neurogenesis and age-associated cognitive decline and psychiatric disorders. Thus, adult hippocampal neurogenesis has garnered significant interest because targeting it could be a novel potential therapeutic strategy for these disorders. However, if we are to use neurogenesis to halt or reverse hippocampal-related pathology, we need to understand better the core molecular machinery that governs NSC and their progeny. In this review, we summarize a wide variety of mouse models used in adult neurogenesis field, present their advantages and disadvantages based on specificity and efficiency of labeling of different cell types, and review their contribution to our understanding of the biology and the heterogeneity of different cell types found in adult neurogenic niches.  相似文献   

12.
Since numerous diseases affect the central nervous system and it has limited self-repair capability, a great interest in using stem cells as an alternative cell source is generated. Previous reports have shown the differentiation of adipose-derived stem cells in neuron-like cells and it has also been proved that the expression pattern of patterning, proneural, and neural factors, such as Pax6, Mash1, Ngn2, NeuroD1, Tbr2 and Tbr1, regulates and defines adult neurogenesis. Regarding this, we hypothesize that a functional parallelism between adult neurogenesis and neuronal differentiation of human adipose-derived stem cells exists. In this study we differentiate human adipose-derived stem cells into neuron-like cells and analyze the expression pattern of different patterning, proneural, neural and neurotransmitter genes, before and after neuronal differentiation. The neuron-like cells expressed neuronal markers, patterning and proneural factors characteristics of intermediate stages of neuronal differentiation. Thus we demonstrated that it is possible to differentiate adipose-derived stem cells in vitro into immature neuron-like cells and that this process is regulated in a similar way to adult neurogenesis. This may contribute to elucidate molecular mechanisms involved in neuronal differentiation of adult human non-neural cells, in aid of the development of potential therapeutic tools for diseases of the nervous system.  相似文献   

13.
14.
15.
Lever C  Burgess N 《Cell》2012,149(1):18-20
How does adult neurogenesis contribute to memory? Nakashiba and colleagues generated mutant mice in which synaptic output from older hippocampal granule cells was specifically blocked. Experiments with these mice reveal an unpredicted age-dependent specialization of function, demonstrating that recently born cells support pattern separation, whereas older cells support pattern completion.  相似文献   

16.
Adult neurogenesis in natural populations   总被引:2,自引:0,他引:2  
The dogma that the adult brain produces no new neurons has been overturned, but the critics are still asking, so what? Is adult neurogenesis a biologically relevant phenomenon, or is it perhaps harmful because it disrupts the existing neuronal circuitry? Considering that the phenomenon is evolutionarily conserved in all mammalian species examined to date and that its relevance has been well documented in non-mammalian species, it seems self-evident that neurogenesis in adult mammals must have a role. In birds, it has been established that neurogenesis varies dramatically with seasonal changes in song production. In chickadees, the learning behaviour related to finding stored food is also correlated with seasonal adult neurogenesis. Such studies are still nonexistent in mammals, but the related evidence suggests that neurogenesis does vary seasonally in hamsters and shows sexual differences in meadow voles. To promote studies on natural populations asking fundamental questions of the purpose and function of neurogenesis, we organized a Workshop on "Hippocampal Neurogenesis in Natural Populations" in Toronto in May 2000. The Workshop highlighted recent discoveries in neurogenesis from the lab, and focused on its functional consequences. The consensus at the Workshop was that demonstration of a role for neurogenesis in natural behaviours will ultimately be essential if we are to understand the purpose and function of neurogenesis in humans.  相似文献   

17.
New neurons are generated throughout life in distinct areas of the mammalian brain. This process, called adult neurogenesis, has challenged previously held concepts about adult brain plasticity and opened novel therapeutic avenues to treat certain neuro-psychiatric diseases. Here, we review the current knowledge regarding the fate and potency of neural stem cells (NSCs), as well as the mechanisms underlying neuronal differentiation and subsequent integration. Furthermore, we discuss the functional significance of adult neurogenesis in health and disease, and offer brief insight into the future directions of the adult neurogenesis field.  相似文献   

18.
Development of neural stem cell in the adult brain   总被引:5,自引:0,他引:5  
New neurons are continuously generated in the dentate gyrus of the mammalian hippocampus and in the subventricular zone of the lateral ventricles throughout life. The origin of these new neurons is believed to be from multipotent adult neural stem cells. Aided by new methodologies, significant progress has been made in the characterization of neural stem cells and their development in the adult brain. Recent studies have also begun to reveal essential extrinsic and intrinsic molecular mechanisms that govern sequential steps of adult neurogenesis in the hippocampus and subventricular zone/olfactory bulb, from proliferation and fate specification of neural progenitors to maturation, navigation, and synaptic integration of the neuronal progeny. Future identification of molecular mechanisms and physiological functions of adult neurogenesis will provide further insight into the plasticity and regenerative capacity of the mature central nervous system.  相似文献   

19.
Brain plasticity refers to the brain’s ability to change structure and/or function during maturation, learning, environmental challenges, or disease. Multiple and dissociable plastic changes in the adult brain involve many different levels of organization, ranging from molecules to systems, with changes in neural elements occurring hand-in-hand with changes in supportive tissue elements, such as glia cells and blood vessels. There is now substantial evidence indicating that new functional neurons are constitutively generated from endogenous pools of neural stem cells in restricted areas of the mammalian brain, throughout life. So, in addition to all the other known structural changes, entire new neurons can be added to the existing network circuitry. This addition of newborn neurons provides the brain with another tool for tinkering with the morphology of its own functional circuitry. Although the ongoing neurogenesis and migration have been extensively documented in non-mammalian species, its characteristics in mammals have just been revealed and thus several questions remain yet unanswered. Is adult neurogenesis an atavism, an empty-running leftover from evolution? What is adult neurogenesis good for and how does the brain ‘know’ that more neurons are needed? How is this functional demand translated into signals a precursor cell can detect? Adult neurogenesis may represent an adaptive response to challenges imposed by an environment and/or internal state of the animal. To ensure this function, the production, migration, and survival of newborn neurons must be tightly controlled. We attempt to address some of these questions here, using the olfactory bulb as a model system.  相似文献   

20.

Background

Adult neurogenesis mirrors the brain´s endogenous capacity to generate new neurons throughout life. In the subventricular zone/ olfactory bulb system adult neurogenesis is linked to physiological olfactory function and has been shown to be impaired in murine models of neuronal alpha-Synuclein overexpression. We analyzed the degree and temporo-spatial dynamics of adult olfactory bulb neurogenesis in transgenic mice expressing human wild-type alpha-Synuclein (WTS) under the murine Thy1 (mThy1) promoter, a model known to have a particularly high tg expression associated with impaired olfaction.

Results

Survival of newly generated neurons (NeuN-positive) in the olfactory bulb was unchanged in mThy1 transgenic animals. Due to decreased dopaminergic differentiation a reduction in new dopaminergic neurons within the olfactory bulb glomerular layer was present. This is in contrast to our previously published data on transgenic animals that express WTS under the control of the human platelet-derived growth factor β (PDGF) promoter, that display a widespread decrease in survival of newly generated neurons in regions of adult neurogenesis, resulting in a much more pronounced neurogenesis deficit. Temporal and quantitative expression analysis using immunofluorescence co-localization analysis and Western blots revealed that in comparison to PDGF transgenic animals, in mThy1 transgenic animals WTS is expressed from later stages of neuronal maturation only but at significantly higher levels both in the olfactory bulb and cortex.

Conclusions

The dissociation between higher absolute expression levels of alpha-Synuclein but less severe impact on adult olfactory neurogenesis in mThy1 transgenic mice highlights the importance of temporal expression characteristics of alpha-Synuclein on the maturation of newborn neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号