首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nutrient removal from synthetic wastewater was investigated using a four-step sequencing batch reactor (SBR) at different phenol (C6H5OH) concentrations in order to determine the inhibition effects of phenol on biological nutrient removal. The nutrient removal process consisted of anaerobic, oxic, anoxic, and oxic phases with hydraulic residence times (HRT) of 1 h/3 h/1 h/1 h and a settling phase of 3/4 h. Solids retention time (SRT) was kept constant at 10 days in all experiments. Initial phenol concentrations were varied between 0 and 600 mg l−1 at seven different levels. The effects of phenol on COD, NH4-N, and PO4-P removals and effluent nutrient levels were investigated. Phenol was almost completely degraded up to 400 mg l−1 phenol concentration resulting in almost negligible inhibition effects on COD, NH4-N, and PO4-P removals. Nutrient removals were adversely affected by phenol at concentrations above 400 mg l−1. Above 95% COD, 90% NH4-N and 65% PO4-P removal was obtained for phenol concentrations below 400 mg l−1. The sludge volume index (SVI) was almost constant around 45 ml g−1 for phenol concentrations below 400 mg l−1 but increased to 90 ml g−1 at a phenol level of 600 mg l−1.  相似文献   

2.
The present study is related to treatment of textile wastewater in microaerophilic–aerobic hybrid reactor. The study showed the effectiveness of biological treatment of wastewater involving appropriate microorganism and suitable reactors. COD and color were reduced to 82–94%, and 99% respectively for textile wastewater. The reactor was operated at highest loading of 16.4 g COD g l−1 d−1 and obtained 80% COD and 72% color removal. Biokinetic models were applied to data obtained from experimental studies in continuously operated hybrid reactor. Treatment efficiencies of the reactor were investigated at different hydraulic retention times (2.3–9.1 d) and organic loading rates (2.6–16.4 g COD l−1 d−1). Second-order and a Stover–Kincannon models were best fitted to the hybrid column reactor. The second-order substrate removal rate constant (k2(S)) was found as 41.44 d−1 for hybrid reactor. Applying the modified Stover–Kincannon model to the hybrid reactor, the maximum removal rate constant (Umax) and saturation value constant (KB) were found to be 212 g l−1 d−1 and 22.89 g l−1 d−1, respectively.  相似文献   

3.
In the present study mixed cultures that could grew in the molasses media were isolated from textile dye effluent and its decolorization activity was studied in a batch system under anaerobic conditions, in order to determine the optimal conditions required for the highest decolorization activity. The optimum pH value for decolorization was determined as 8 for all the dyes tested. In the experiment with pH 8 dye decolorizations by mixed cultures were investigated at about 96.2–1031.3 mg l−1 initial dye concentrations. The highest dye removal rates of mixed cultures were 94.9% for Reactive Red RB, 91.0% for Reactive Black B and 63.6% for Remazol Blue at 953.2, 864.9 and 1031.3 mg l−1 initial dye concentrations respectively within 24 h incubation period. When the Reactive Red RB was used, approximately 82–98% total color removal was obtained at between 96.2 and 953.2 mg l−1 initial dye concentrations after 12 h of incubation at 35 °C. These results show that our enriched mixed cultures have the potential to serve as an excellent biomass for the use in reactive dye removal from wastewaters under anaerobic conditions.  相似文献   

4.
The effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater was investigated. Experiments were conducted in a modified Ludzack–Ettinger pilot-plant configuration for 365 days. Total nitrification of an influent concentration of 1200 mg NH4+–N l−1 was obtained in this period. Influent COD/N ratios between 0.71 and 3.4 g COD g N−1 were tested by varying the nitrogen loading rate (NLR) supplied to the pilot plant. An exponential decrease of nitrification rate was observed when the influent COD/N ratio increased.

The experimental COD/N ratio for denitrification was 7.1±0.8 g COD g N−1 while the stoichiometric ratio was 4.2 g COD g N−1. This difference is attributable to the oxidation of organic matter in the anoxic reactor with the oxygen of the internal recycle. The influence of influent COD/N ratio on the treatment of high-strength ammonium industrial wastewater can be quantified with these results. The influence of COD/N ratio should be one of the main parameters in the design of biological nitrogen removal processes in industrial wastewater treatment.  相似文献   


5.
Dry biomass of Spirulina platensis re-hydrated for 48 h was employed as a biosorbent in tests of cadmium(II) removal from water. Various concentrations of biomass (from 1 to 4 g l−1) and metal (from 100 to 800 mg l−1) were tested. Low biomass levels (Xo  2 g l−1) ensured metal removal up to 98% only at Cd0= 100 and 200 mg l−1, while Xo  2.0 g l−1 were needed at Cd0 = 400 mg l−1 to achieve satisfactory results. Whereas Xo = 4.0 g l−1 was effective to remove up to Cd0 = 500 mg l−1, a further increase in metal concentration (Cd0 = 600 and 800 mg l−1) led to progressive worsening of the system performance. At a given biomass levels, the kinetics of the process was better at low Cd2+ concentrations, while, raising the adsorbent level from 1.0 to 2.0 g l−1 and then to 4.0 g l−1, the rate constant of biosorption increased by about one order of magnitude in both cases and the adsorption capacity of the system progressively decreased from 357 to 149 mg g−1.  相似文献   

6.
AIMS: To test the potential use of Phanerochaete chrysosporium and other white-rot fungi to detoxify olive mill wastewaters (OMW) in the presence of a complex activated sludge. To combine the aerobic with anaerobic treatment to optimize the conversion of OMW in biogas. METHODS AND RESULTS: A 25-l air lift reactor was used to pretreat OMW by white-rot fungi. Detoxification of the OMW was monitored by size exclusion HPLC analysis, chemical oxygen demand (COD)/biological oxygen demand (BOD(5)) ratio evolution, and bioluminescence toxicity test. Anaerobic treatment of OMW was performed in a 12-l anaerobic filter reactor. Efficiency of the treatment was evaluated by organic matter removal, and biogas production. By comparison with the pretreatment by activated sludge only, the bioaugmentation with Phanerochaete chrysosporium or Trametes versicolor led to high removal of organic matter, decreased the COD/BOD(5) ratio and the toxicity. The subsequent anaerobic digestion of the OMW pretreated with activated sludge-white-rot fungi showed higher biomethanization yields than that pretreated with activated sludge only. Higher loading rates (7 g COD l(-1) day(-1)) were reached without any acidification or inhibition of biomethanization. CONCLUSIONS: The use of white-rot fungi, even in the presence of complex biological consortia to detoxify OMW, proved to be possible and made the anaerobic digestion of OMW for methane production feasible. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of fungi for OMW reuse and energy production could be adapted to industrial applications.  相似文献   

7.
The raw chess whey (CW) treatment capacity of a jet loop membrane bioreactor (JLMBR) was evaluated. Raw CW was first characterized for carbonaceous, nitrogenous and phosphorus compounds. The total COD range of the raw CW was between 73 and 86 kg m−3 and 82% of the total COD was found to be soluble. The JLMBR system, of 32 l capacity was operated continuously for 3 months with a sludge age of 1.1–2.8 days and COD loads of 3.5–33.5 kg-COD m−3 per day. A treatment efficiency of 97% was obtained for 1.6 days of sludge age and COD loads of 22.2 kg-COD m−3 per day. The sludge flocks observed in the system were highly motile, dispersed and had poor settling properties. The membrane filtration characteristics of this sludge were investigated and increasing MLSS concentration decreased membrane flux values.  相似文献   

8.
The current study was made to develop a biosensor based on a single-chamber microbial fuel cell in which anaerobes were retained in the anode compartment separated from the cathode compartment by a proton exchange membrane. In the sensor a replaceable anaerobic consortium was used for analyzing biodegradable organic matter. The anaerobes acted as biocatalysts in oxidizing organic matter and transferring electrons to the anode. The biocatalysts were renewed for each sample analysis by replacing the old anaerobic consortium with an equal amount of fresh one. A glucose standard solution was used as the target substrate. To obtain the maximum sensor output, the MFC-based sensor system was optimized using an 800 Ω resistor as the load to the external electric circuit and 25 mM phosphate buffer with 50 mM NaCl as catholyte in the aerobic compartment. The temperature of anaerobic compartment was maintained at optimal 37 °C. The cell potential across the electrodes increased with increasing loading of glucose. The sensor response was linear against concentration of glucose up to 25 g l−1. The detection limit was found as 0.025 g l−1. The microbial fuel cell with replaceable anaerobic consortium could be used as a biosensor for on-line monitoring of organic matter.  相似文献   

9.
When cultivated in Murashige & Skoog medium supplemented with 0.2 mg l−1 2,4-dichlorophenoxy acetic acid and 0.5 mg l−1 6-benzyladenine, Perilla frutescens cells in suspension culture grew rapidly reaching about 13.6 g dry wt l−1 after 12 days. The cell line produced both anthocyanin 0.9 g l−1 and triterpenoids: 16 mg l−1 oleanolic acid (OA), 25 mg l−1 ursolic acid (UA) and 14 mg l−1 tormentic acid (TA). When P. frutescens cells of 7-day-old cultures were exposed to a yeast elicitor at 0.5–5% (v/v) for 7 days, it was found that anthocyanin content peaked at 10.2% of dry weight with yeast elicitor at 1% (v/v) whereas the maximum production of oleanolic acid and ursolic acid in cultures treated with 2% (v/v) yeast elicitor was 19 and 27 mg l−1, a 46 and 24% increase over the control, respectively. This is the first report of simultaneous production of both anthocyanin and triterpenoids in a single culture system.  相似文献   

10.
Biological treatment using attached growth in a three-stage lab-scale rotating biological contactor (RBC) was implemented for wastewater from food cannery industries. The wastewater contained high level of organic compounds due to fish and fruit cleaning, cooking and filling processes. Nutrients available in the wastewater enhanced the growth of microorganisms and allowed the biological treatment to be effective. The RBC consisted of 54 parallel discs rotating in a reservoir and was arranged in three stages, i.e. 18 discs oriented in each stage. Effect of major operating and physical variables such as hydraulic retention time (HRT), disc submergence and disc rotational speed were examined in COD removal. For duration of 5 days, 96.4% BOD removal was achieved in batch experiment. BOD constant rate (k) and ultimate BOD were determined respectively, 0.8198 day−1 and 6349 mg/l by Thomas graphical method. COD removal efficiency was increased from 85.3 to 97.4% while the HRT was increased from 24 to 48 h. The COD removal efficiency increased from 74.9 to 87.5% as the disc submergence was increased from 31 to 36%. At submergence level of 23.7%, removal efficiency was increased due to activation of second and third compartments. When the rotational speed was increased from 3 to 11 rpm, the COD removal efficiency was also increased from 62.7 to 93.7%, respectively. The stage COD removal efficiency was gradually decreased with an increase number of stage and about 88% of organic compounds were removed in the first stage of aerobic RBC, indicating that the single stage reactor may be sufficient in practical application.  相似文献   

11.
Solutions of sodium caprate and sodium laurate were digested in upflow anaerobic sludge bed (UASB) reactors inoculated with granular sludge and in expanded granular sludge bed (EGSB) reactors. UASB reactors are unsuitable if lipids contribute 50% or more to the COD of waste water: the gas production rate required to obtain sufficient mixing and contact cannot be achieved. At lipid loading rates exceeding 2–3 kg COD m−3 day−1, total sludge wash-out occurred. At lower loading rates the system was unreliable, due to unpredictable sludge flotation. EGSB reactors do fulfil the requirements of mixing and contact. They accommodate space loading rates up to 30 kg COD m−3 day−1 during digestion of caprate or laurate as sole substrate, at COD removal efficiencies of 83–91%, and can be operated at hydraulic residence times of 2 h without any problems. Augmentation of granular sludge in lab-scale EGSB reactors was demonstrated. The new granules had excellent settling properties. Floating layer formation, as well as mixing characteristics in full-scale EGSB reactors require further research.  相似文献   

12.
Cheese whey powder (CWP) solution with different CWP or sugar concentrations was fermented to ethanol in a continuous fermenter using pure culture of Kluyveromyces marxianus (DSMZ 7239). Sugar concentration of the feed CWP solution varied between 55 and 200 g l−1 while the hydraulic residence time (HRT) was kept constant at 54 h. Ethanol formation, sugar utilization and biomass formation were investigated as functions of the feed sugar concentration. Percent sugar utilization and biomass concentrations decreased and the effluent sugar concentration increased with increasing feed sugar concentrations especially for the feed sugar contents above 100 g l−1. Ethanol concentration and productivity (DP) increased with increasing feed sugar up to 100 g l−1 and then decreased with further increases in the feed sugar content. The highest ethanol concentration (3.7%, v v−1) and productivity (0.54 gE l−1 h−1) were obtained with the feed sugar content of 100 g l−1 or 125 g l−1. The ethanol yield coefficient (YP/S) was also maximum (0.49 gE gS−1) when the feed sugar was between 100 and 125 g l−1. The growth yield coefficient (YX/S) decreased steadily from 0.123 to 0.063 gX gS−1 when the feed sugar increased from 55 to 200 g l−1 due to adverse effects of high sugar contents on yeast growth. The optimal feed sugar concentration maximizing the ethanol productivity and sugar utilization was between 100 and 125 g l−1 under the specified experimental conditions.  相似文献   

13.
14.
The aim of this work was to assess the potential for bacterial oxidation of hydrogen sulphide as a purification method of sour gas. Using a continuous culture of Chlorobium limicola, high efficiencies of oxidation of both soluble and gaseous sulphide were achieved, with efficiencies for the latter exceeding 95%. Sulphide added as aqueous sodium sulphide was converted to sulphur and sulphate with almost total removal of the initial 100 mg S l−1 within 24 h. Gaseous sulphide was oxidized at an efficiency of 95% (approximately 3 mmol S h−1 (unit biomass Abs)−1) over 1 h runs at a gas flow rate of 60 ml min−1. With a sulphur recovery system to prevent sulphur accumulation, an efficiency of 70% was maintained. Biological removal of sulphide represents a potentially important biotechnological process, with high potential for viable scale up.  相似文献   

15.
Results are presented from a pilot scale (4·3 m3) upflow anaerobic filter for the treatment of the wastewater from ice-cream manufacture. The reactor was completely mixed by gas production but the solids or sludge held within the reactor were shown to be affected by the liquid velocities. The reactor was subject to a number of organic and hydraulic shocks and this reduced the consistency of COD removal. Daily loading rates varied from 0 to 18 kg COD/m3/day but with an average load of 5·5 kg/m3/day the mean COD removal was 70%. This was compared with previous work and shown to be a typical performance for an anaerobic filter. Alkalinity and carboxylic acid data are also presented and were within the normal, stable, operating range. Previous research on the anaerobic treatment of industrial effluents has shown alkalinity to be the most important factor controlling reliability.  相似文献   

16.
In this study, the effect of increasing p-nitrophenol (PNP) concentrations on the performance of anaerobic baffled reactor (ABR) (chemical oxygen demand (COD), removals, volatile fatty acid (VFA), p-aminophenol (PAP) and methane gas productions) was investigated through 240 days. The PNP concentrations were raised to 700 from 10 mg/L corresponding to PNP loading rates of 0.97 and 67.9 g/m3 day. The PNP and COD removal efficiencies were 99 and 90% at PNP loading rates as high as 33.9 g/m3 day, respectively, through the acclimation of anaerobic granular sludge. After this loading rate, the removal efficiencies decreased to 79%. The COD removal efficiencies were high in compartment 1 (E = 78–93%) while a small amount of COD removal was achieved in compartments 2 and 3. The PNP removal efficiencies were approximately 90% in all PNP loading rates except for loading rate of 0.97 g/m3 day. The maximum PNP removal efficiency was measured as 99% at a loading rate of 8.32 g/m3 day. The optimum PNP loading rate for maximum COD, PNP removals and methane yield was 8.32 g/m3 day. The total, methane gas productions and methane percentages were approximately 2160–2400 mL/day and 950–1250 mL/day and 44–52% for the PNP loading rates varying between 4.36 and 33.9 g/m3 day, respectively. For PNP loading rates varying between 33.9 and 67.9 g/m3 day, the total, methane gas productions and methane percentages were approximately 2160 and 960 mL/day and 44%, respectively. The highest total volatile fatty acid (TVFA) concentrations were found in the first compartment with fluctuated values varied between 50 and 200 mg/L indicating the acidogenesis. p-Aminophenol was found as the main intermediate through anaerobic degradation of PNP which later was broken down to phenol and ammonia.  相似文献   

17.
Aims:  To investigate the effects of low temperatures on the performance and microbial community of anaerobic wastewater treatment.
Methods and Results:  An expanded granular sludge bed (EGSB) reactor was employed to treat synthetic brewery wastewater at 20 and 15°C. Reactor performance was represented by chemical oxygen demand (COD) removal efficiency, while the microbial community was analysed using denaturing gradient gel electrophoresis (DGGE) and clone technology. When the hydraulic retention time (HRT) was maintained at 18 h, COD removal efficiencies above 85% were obtained at both 20 and 15°C, with influent COD concentrations up to 7300 and 4100 mg l−1, respectively. At 15°C, the COD removal efficiency was more easily manipulated by increasing the influent COD concentration. DGGE and clone results for both temperatures revealed that Methanosaeta and Methanobacterium were two dominant methanogens, and that the majority of the eubacterial clones were represented by Firmicutes . When the temperature decreased from 20 to 15°C, both archaeal and eubacterial communities had higher diversity, and the proportion of Methanosaeta (acetate-utilizing methanogens) decreased markedly from 60·0% to 49·3%, together with an increase in proportions of hydrogen-utilizing methanogens (especially Methanospirillum ).
Conclusions:  The feasibility of psychrophilic anaerobic treatment of low and medium strength organic wastewaters was demonstrated, although lower temperature could significantly affect both reactor performance and the anaerobic microbial community.
Significance and Impact of the Study:  The findings enrich the theory involving the microbial community and the application of anaerobic treatment in a psychrophilic environment.  相似文献   

18.
Mesophilic anaerobic digestion of slaughterhouse waste (SHW) and its co-digestion with the organic fraction of municipal solid waste (OFMSW) have been evaluated. These processes were carried out in a laboratory plant semi-continuously operated and two set-ups were run. The first set-up, with a hydraulic retention time (HRT) of 25 days and organic loading rate (OLR) of 1.70 kg VS m−3 day−1 for digestion, and 3.70 kg VS m−3 day−1 for co-digestion, was not successful. The second set-up was initiated with an HRT of 50 days and an OLR of 0.9 kg VS m−3 day−1 for digestion and 1.85 kg VS m−3 day−1 for co-digestion. Under these conditions, once the sludge had been acclimated to a medium with a high fat and ammonia content, it was possible to decrease the HRT while progressively increasing the OLR to the values used in the first set-up until an HRT of 25 days and OLRs of 1.70 and 3.70 kg VS m−3 day−1, for digestion and co-digestion, respectively (the same conditions of the digesters failures previously). These digesters showed a highly stable performance, volatile fatty acids (VFAs) were not detected and long chain fatty acids (LCFAs) were undetected or only trace levels were measured in the analyzed effluent. Fat removal reached values of up to 83%. Anaerobic digestion was thus found to be a suitable technology for efficiently treating lipid and protein waste.  相似文献   

19.
The performance of packed-bed biofilm reactor (PBBR) with self-floating bio-carriers was investigated to treat highly concentrated organic nitrogenous aniline wastewater with a COD value as high as 24,000 mg/L. With 45 vol% of carrier charge inside the reactor, the aniline wastewater can be effectively treated with 94% of COD removal efficiency at a low organic loading rate (OLR) of 0.9 kg COD/(m3 d). The removal efficiency decreased gradually down to 75% when OLR increased to 12.27 kg COD/(m3 d) that corresponded to 1 day of HRT. Separate tests with biofilm alone showed that the conversion contribution of the biofilm was about half of the overall COD conversion by the biofilm plus sludge system at the same OLRs of 3–4 kg COD/(m3 d), and that the biofilm had higher activity than suspended sludge. Ammonium released from decomposed aniline was increased gradually from 500 to 1700 mg/L with the OLR increase from 0.9 to 12.27 kg COD/(m3 d), which resulted in inhibitory effect to the microorganism due to the toxicity of free ammonia. Batch anaerobic toxicity tests showed that the biofilm was less sensitive to toxic compounds than suspended sludge and could tolerate higher concentration of free ammonia.  相似文献   

20.
An oxygen limitation strategy based on dynamic enzyme activity was applied to improve glycerol accumulation and decrease the residual sugar level in a fermentation of Candida krusei in a bioreactor. By applying oxygen limitation at 88 h when the activities of two glycerol synthetic enzymes cytosolic glycerol-3-phosphate dehydrogenase (ctGPD) and glycerol-3-phosphatase (GPP) were low and the activity of mitochondrial glycerol-3-phosphate dehydrogenase (mtGPD) which catalyzes the glycerol dissimilation was high, the glycerol dissimilation was efficiently reduced. The final glycerol concentration reached 51.8 g l−1 at 96 h and 54.9 g l−1 at 116 h, which was 18 and 60% higher than the control (without oxygen limitation), respectively. The residual sugar was consumed completely while it was 11.2 g l−1 at the end of fermentation in the control. Under oxygen limitation, ethanol production was detected at a final concentration of 3.6 g l−1. This work suggests a metabolic flux shift by oxygen limitation in the bioreactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号