首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six children were provided with long-term biofeedback and academic treatment for attention deficit disorders. Their symptoms were primarily specific learning disabilities, and, in some cases, there were varying degrees of hyperkinesis. The training consisted of two sessions per week for 10 to 27 months, with a gradual phase-out. Feedback was provided for either increasing 12- to 15-Hz SMR or 16- to 20-Hz beta activity. Inhibit circuits were employed for blocking the SMR or beta when either gross movement, excessive EMG, or theta (4-8 Hz) activity was present. Treatment also consisted of combining the biofeedback with academic training, including reading, arithmetic, and spatial tasks to improve their attention. All children increased SMR or beta and decreased slow EEG and EMG activity. Changes could be seen in their power spectra after training in terms of increased beta and decreased slow activity. All six children demonstrated considerable improvement in their schoolwork in terms of grades or achievement test scores. None of the children are currently on any medications for hyperkinetic behavior. The results indicate that EEG biofeedback training, if applied comprehensively, can be highly effective in helping to remediate children who are experiencing attention deficit disorders.  相似文献   

2.
Enhanced voluntary motor inhibition regularly accompanies conditioned increases in the sensorimotor rhythm (SMR), a 12–14-Hz Rolandic EEG rhythm in cats. A similar rhythm, presumably SMR, has also been identified in the human EEG. The clinical effectiveness of SMR operant conditioning has been claimed for epilepsy, insomnia, and hyperkinesis concurrent with seizure disorders. The present report attempts to follow up and replicate preliminary findings that suggested the technique's successful application to hyperkinesis uncomplicated by a history of epilepsy. SMR was defined as 12–14-Hz EEG activity in the absence of high-voltage slow-wave activity between 4 and 7 Hz. Anticipated treatment effects were indexed by systematic behavioral assessments of undirected motor activity and short attention span in the classroom. EEG and behavioral indices were monitored in four hyperkinetic children under the following six conditions: (1) No Drug, (2) Drug Only, (3) Drug and SMR Training I, (4) Drug and SMR Reversal Training, (5) Drug and SMR Training II, (6) No Drug and SMR Training. All hyperkinetic subjects were maintained on a constant drug regimen throughout the phases employing chemotherapy. Contingent increases and decreases in SMR occurred in three of four training subjects and were associated with similar changes in classroom assessments of motor inactivity. Combining medication and SMR training resulted in substantial improvements that exceeded the effects of drugs alone and were sustained with SMR training after medication was withdrawn. In contrast, these physiological and behavioral changes were absent in one highly distractible subject who failed to acquire the SMR task. Finally, pretraining levels of SMR accurately reflected both the severity of original motor deficits and the susceptibility of hyperkinetic subjects to both treatments. Although the procedure clearly reduced hyperkinetic behavior, a salient, specific therapeutic factor could not be identified due to the dual EEG contingency imposed combined with associated changes in EMG. Despite these and other qualifying factors, the findings suggested the prognostic and diagnostic value of the SMR in the disorder when overactivity rather than distractibility is the predominant behavioral deficit.  相似文献   

3.
Enhanced voluntary motor inhibition regularly accompanies conditioned increases in the sensorimotor rhythm (SMR), a 12--14-Hz Rolandic EEG rhythm in cats.A similar rhythm, presumably SMR, has also been identified in the human EEG. The clinical effectiveness of SMR operant conditioning has been claimed for epilepsy, insomnia, and hyperkinesis concurrent with seizure disorders. The present report attempts to follow up and replicate preliminary findings that suggested the technique's successful application to hyperkinesis uncomplicated by a history of epilepsy. SMR was defined as 12--14-Hz EEG activity in the absence of high-voltage slow-wave activity between 4 and 7 Hz. Anticipated treatment effects were indexed by systematic behavioral assessments of undirected motor activity and short attention span in the classroom. EEG and behavioral indices were monitored in four hyperkinetic children under the following six conditions: (1) No Drug, (2) Drug Only, (3) Drug and SMR Training I, (4) Drug and SMR Reversal Training, (5) Drug and SMR Training II, (6) No Drug and SMR Training. All hyperkinetic subjects were maintained on a constant drug regimen throughout the phases employing chemotherapy. Contingent increases and decreases in SMR occurred in three of four training subjects and were associated with similar changes in classroom assessments of motor inactivity. Combining medication and SMR training resulted in substantial improvements that exceeded the effects of drugs alone and were sustained with SMR training after medication was withdrawn. In contrast, these physiological and behavioral changes were absent in one highly distractible subject who failed to acquire the SMR task. Finally, pretraining levels of SMR accurately reflected both the seve-ity of original motor deficits and the susceptibility of hyperkinetic subjects to both treatments. Although the procedure clearly reduced hyperkinetic behavior, a salient, specific therapeutic factor could not be identified due to the dual EEG contingency imposed combined with associated changes in EMG. Despite these and other qualifying factors, the findings suggested the prognostic and diagnostic value of the SMR in the disorder when overactivity rather than distractibility is the predominant behavioral deficit.  相似文献   

4.
5.
Two groups of eight adults successfully trained with biofeedback for increases in 40-Hz EEG responses in left or right hemispheres also demonstrated significant 40-Hz EEG increases during baseline periods, and increases in the contralateral hemisphere during training periods. No changes in heart rate, 40-Hz EMG, or 21- to 31-Hz beta, alpha, or theta EEG occurred over training days. Three subjects returning for additional training demonstrated suppression of 40-Hz EEG. A group of four subjects experiencing daily bidirectional training produced substantial within-session control of 40-Hz EEG but no changes over days. Data from posttraining tests without feedback for successful subjects in both groups indicated significant control of 40-Hz EEG responses in the initial parts of these sessions, and some correlated changes in other EEG responses. Measures of successful subjects' experiences during training and control tests indicated awareness of changes in subjective concomitants of EEG responses. This study suggests further strategies for research on behavioral correlates of EEG activity.  相似文献   

6.
The serial application of electromyographic (EMG) and sensorimotor (SMR) biofeedback training was attempted with a 10-year-old boy presenting a triad of symptoms: an attention deficit disorder with hyperactivity, developmental reading disorder, and ocular instability. Symptom elimination was achieved, for all three aspects of the triad, following the procedure of first conditioning a decrease in EMG-monitored muscle tension and then conditioning increases in the amplitude of sensorimotor rhythm over the Rolandic cortex. The learned reduction of monitored EMG levels was accompanied by a reduction in the child's motoric activity level to below that which had been achieved by past administration of Ritalin. In addition, the attention deficit disorder with hyperactivity was no longer diagnosable following the EMG biofeedback training. The learned increase in the amplitude of monitored SMR was accompanied by remediation of the developmental reading disorder and the ocular instability. These results remained unchanged, as ascertained by follow-ups conducted over a 24-month period subsequent to the termination of biofeedback training.  相似文献   

7.
Reduced seizure incidence coupled with voluntary motor inhibition accompanied conditioned increases in the sensorimotor rhythm(SMR), a 12–14 Hz rhythm appearing over rolandic cortex. Although SMR biofeedback training has been successfully applied to various forms of epilepsy in humans, its potential use in decreasing hyperactivity has been limited to a few cases in which a seizure history was also a significant feature. The present study represents a first attempt to explore the technique's applicability to the problem of hyperkinesis independent of the epilepsy issue. The results of several months of EEG biofeedback training in a hyperkinetic child tend to corroborate and extend previous findings. Feedback presentations for SMR were contingent on the production of 12–14-Hz activity in the absence of 4–7-Hz slow-wave activity. A substantial increase in SMR occurred with progressive SMR training and was associated with enhanced motor inhibition, as gauged by laboratory measures of muscular tone(chin EMG) and by a global behavioral assessment in the classroom. Opposite trends in motor inhibition occurred when the training procedure was reversed and feedback presentations were contingent on the production of 4–7 Hz in the absence of 12–14-Hz activity. Although the preliminary nature of these results is stressed, the subject population has recently been increased to establish the validity and generality of the findings and will include the use of SMR biofeedback training after medication has been withdrawn.This research was a segment of the junior author's dissertation research.  相似文献   

8.
Eight severely epileptic patients, four males and four females, ranging in age from 10 to 29 years, were trained to increase 12–14 Hz EEG activity from the regions overlying the Rolandic area. This activity, the sensorimotor rhythm(SMR), has been hypothesized to be related to motor inhibitory processes(Sterman, 1974). The patients represented a crosssection of several different types of epilepsy, including grand mal, myoclonic, akinetic, focal, and psychomotor types. Three of them had varying degrees of mental retardation. SMR was detected by a combination of an analog filtering system and digital processing. Feedback, both auditory and/or visual, was provided whenever one-half second of 12–14-Hz activity was detected in the EEG. Patients were provided with additional feedback keyed by the output of a 4–7-Hz filter which indicated the presence of epileptiform spike activity, slow waves, or movement. Feedback for SMR was inhibited whenever slow-wave activity spikes or movement was also present. During the treatment period most of the patients showed varying degrees of improvement. Two of the patients who had been severely epileptic, having multiple seizures per week, have been seizure free for periods of up to 1 month. Other patients have developed the ability to block many of their seizures. Seizure intensity and duration have also decreased. Furthermore, the successful patients demonstrated an increase in the amount of SMR and an increase in amplitude of SMR during the training period. Spectral analyses for the EEGs were performed periodically. The effectiveness of SMR conditioning for the control of epileptic seizures is evaluated in terms of patient characteristics and type of seizures.  相似文献   

9.
Maintenance of conditioning of 40-Hz EEG activity was investigated in six adults 1 to 3 years after they had experienced biofeedback training to increase 40-Hz EEG. Subjects were first retrained to alternately increase and suppress 40-Hz EEG. All six subjects achieved a preset performance criterion in 16–20 minutes. Five of these subjects also subsequently demonstrated significant control of 40-Hz EEG without feedback. The sixth subject did not demonstrate control after 76 minutes and four sessions of attempted retraining with feedback. Transfer of 40-Hz EEG control to a problem-solving task was tested in all subjects in a final session. Cognitive test items were presented and subjects were instructed to alternately increase and suppress 40-Hz EEG while solving the problems. Rates of 40-Hz EEG in suppression periods during problem solving were significantly greater than during suppression periods without problems. No significant differences in problem-solving performance were found comparing 40-Hz increase and suppression periods. This study supports previous research suggesting an association between 40-Hz EEG and mental activity, and suggests methods for further study of transfer of EEG biofeedback effects.  相似文献   

10.
The sleep EEGs of eight medically refractory epileptic patients were examined as part of a double-blind, ABA crossover study designed to determine the effectiveness of EEG biofeedback for the control of seizures. The patients were initially reinforced for one of three EEG criteria recorded from electrodes placed over sensorimotor cortex: (a) suppression of 3- to 7-Hz activity, (b) enhancement of 12- to 15-Hz activity, or (c) simultaneous suppression of 3- to 7-Hz and enhancement of 11- to 19-Hz activity. Reinforcement contingencies were reversed during the second or B phase, and then reinstated in their original form during the final A′ phase. All-night polysomnographic recordings were obtained at the end of each conditioning phase and were subjected to both visual and computer-based power spectral analyses. Four of the patients showed changes in their nocturnal paroxysmal activity that were either partially or totally consistent with the ABA′ contingencies of the study. The spectral data proved difficult to interpret, though two trends emerged from the analyses. Decreases in nocturnal 4- to 7-Hz activity were correlated with decreases in seizure activity, and increases in 8- to 11-Hz activity were correlated with decreases in seizure activity. These findings were shown to strengthen the hypothesis that EEG biofeedback may produce changes in the sleep EEG that are related to seizure incidence.  相似文献   

11.
Heart rate, EEG, frontal EMG, and forearm EMG were recorded in 20 subjects for 3 baseline, 8 feedback, and 2 postbaseline sessions in order to compare two biofeedback methods of teaching subjects to increase theta EEG activity. Subjects were divided into high- and low-EMG groups. Five high-EMG subjects, and 5 low-EMG subjects then received 8 sessions of strictly theta feedback. The remaining 10 subjects, 5 from the high-EMG group, and 5 from the low-EMG group, received a “graduated” training which involved shaping the target response. This procedure consisted of 4 initial sessions of EMG feedback, followed by a second phase consisting of 4 sessions of theta feedback. Results showed a clear relationship between subjects' baseline frontal EMG levels and the effect of the training methods. Although subjects with high-EMG baseline increased their theta output only with the two-phase training, subjects with low-EMG baseline levels performed better when given theta feedback only. This result shows not only that amounts of theta can be reliably increased, but that training techniques should be adapted to the physiological characteristics of the individual—in this case, baseline levels of frontal EMG levels.  相似文献   

12.
Fibromyalgia (FMS) is a chronic, painful disorder often associated with measurable deficiencies in attention. Since EEG biofeedback (EEG-BF) has been used successfully to treat attention problems, we reasoned that this modality might be helpful in the treatment of attention problems in FMS. We also speculated that improvement in central nervous system (CNS) function might be accompanied by improvement in FMS somatic symptoms. We studied fifteen FMS patients with attention problems, demonstrated by visual and auditory continuous performance testing (CPT), while completing 40 or more EEG-BF sessions. Training consisted of a “SMR protocol” that augmented 12–15 Hz brainwaves (sensory motor rhythm; SMR), while simultaneously inhibiting 4–7 Hz brainwaves (theta) and 22–30 Hz brainwaves (high beta). Serial measurements of pain, fatigue, psychological distress, morning stiffness, and tenderness were also obtained. Sixty-three FMS patients who received standard medical care, but who did not receive EEG-BF, served as controls. Visual, but not auditory, attention improved significantly (P < 0.008). EEG-BF treated subjects also showed improvement in tenderness, pain and fatigue. Somatic symptoms did not change significantly in controls. Visual attention parameters and certain somatic features of FMS appear to improve with an EEG-BF SMR protocol. EEG-BF training in FMS deserves further study.  相似文献   

13.
Factors that may confound comparisons between electromyographic (EMG) biofeedback training and its control conditions include feedback quality and experience of success. We investigated the usefulness of a control procedure designed to overcome these potential sources of confounding. The procedure consisted of training muscle tension stability. We used it as a control for frontal EMG relaxation training in children with asthma. To equate the groups for feedback quality and experience of success, we gave each child in the control condition audio feedback decreasing in pitch when muscle tension was at or near baseline levels, and feedback increasing in pitch when muscle tension was either substantially above or below baseline levels. Children in both groups were instructed to decrease the pitch of the tone. In comparison to children in the relaxation condition, the children in the control condition exhibited stable levels of muscle tension throughout eight training sessions. We concluded that feedback for stable muscle tension may be a useful control procedure for EMG biofeedback training whenever experimental and control procedures differ in either feedback quality of degree to which they permit subjects to experience success.  相似文献   

14.
Ten years ago, the first successful application of a clinical,private-practice based, EEG 14-Hz biofeedback training regimen for the treatment of learning disorders was performed by the author. After the 10-year-old boy, with presenting symptomology including a developmental reading disorder, hyperactivity, and an educational classification of perceptually impaired, continued symptom free for a period oftwo years, his case was submitted for publication. Ten years after his termination from successful treatment, his ongoingly normal social and academic functioning is noted and his EEG brainwave signature examined and compared with a population of 24 used-to-be learning disabled, one-half of which had a pretreatment state including the educational classification of perceptually impaired. This 10-year follow-up confirms the long-term stability of the results of this EEG 14-Hz biofeedback regimen. Current findings on recent medical research identifying a major cerebral locus of dysfunction for hyperkinesis and how it supports the electrode placements of this clinical office setting regimen is also discussed.  相似文献   

15.
Factors that may confound comparisons between electromyographic (EMG) biofeedback training and its control conditions include feedback quality and experience of success. We investigated the usefulness of a control procedure designed to overcome these potential sources of confounding. The procedure consisted of training muscle tension stability. We used it as a control for frontal EMG relaxation training in children with asthma. To equate the groups for feedback quality and experience of success, we gave each child in the control condition audio feedback decreasing in pitch when muscle tension was at or near baseline levels, and feedback increasing in pitch when muscle tension was either substantially above or below baseline levels. Children in both groups were instructed to decrease the pitch of the tone. In comparison to children in the relaxation condition, the children in the control condition exhibited stable levels of muscle tension throughout eight training sessions. We concluded that feedback for stable muscle tension may be a useful control procedure for EMG biofeedback training whenever experimental and control procedures differ in either feedback quality of degree to which they permit subjects to experience success.This research was supported by NIH-Grant HL 27402. We are grateful to Paul Schnitter who constructed the EMG stability feedback device.  相似文献   

16.
Slow cortical potential biofeedback and the startle reflex   总被引:4,自引:0,他引:4  
The negativity of slow cortical potentials (SCP) of the surface EEG is a measure of brain excitability, correlating with motor and cognitive preparation. Selfcontrol of SCP positivity has been shown to reduce seizure activity. Following SCP biofeedback from a central EEG electrode position, subjects gained bidirectional control over their SCP. The current study used a modified feedback methodology, and found a positive relationship between negativity and magnitude of EMG startle response (a measure of cortical and subcortical arousal, particularly aversive response disposition). Greater success in SCP differentiation was associated with self-report of less relaxation during negativity training.This research was supported by the Deutsche Forschungsgemeinschaft under grant No. SFB 307.  相似文献   

17.
N=1 withdrawal designs were employed with three children evidencing activity-level problems. Tutoring sessions occurred daily over a 2 1/2-month period. Each child was reinforced for decreasing frontalis muscle tension during auditory feedback while working arithmetic problems. Feedback was faded while tension reduction reinforcement was maintained. These procedures were repeated with reinforcement for increasing, rather than decreasing, muscle tension. Frontal EMG level, percent time on task, and motoric activity rate were obtained during sessions. Parent ratings of problem behavior in the home were recorded daily. Biofeedback with reinforcement was effective in both raising and lowering muscle tension. Effects were maintained by reinforcement. Results suggest a direct relationship between tension and activity levels. Academic performance and problem behavior improved significantly with reductions in EMG activity, although individual exceptions to these findings were present. Results lend support to the efficacy of frontal EMG biofeedback training in reducing activity, increasing attention to an academic task, and reducing problem behaviors.  相似文献   

18.
The use of noncontingent feedback controls in studies of the efficacy and process of electromyographic (EMG) biofeedback may yield results confounded by differential expectancies for relaxation. Furthermore, the role of expectancies in producing psychological and physical relaxation as well as reducing muscle activity is unclear. This study investigated the effects of feedback delays and induced relaxation expectancies on EMG activity and experienced relaxation. One hundred four non-clinical subjects participated in one auditory frontal EMG biofeedback training session. Subjects were assigned to one of four computerized feedback delay conditions (0.0037, 0.7493, 2.2481, 6.7444 s) and to one of two relaxation expectancy conditions (positive or negative). During 20 minutes of biofeedback training, all groups decreased frontal activity. Feedback delays interacted with training epochs in affecting EMG; the longest delay group reduced frontal activity more slowly than the shortest delay group during training. Positive relaxation expectancies produced greater experienced relaxation than did negative relaxation expectancies. Instrumental and expectancy factors in EMG biofeedback appear to operate independently of each other by reducing physiological activity and producing psychological relaxation respectively.This study was completed by the first author under the direction of the second author in partial fulfillment of the requirements for the Master of Arts degree. We gratefully acknowledge the computerization advice and assistance provided by Larry Wheeler, and the assistance in data collection provided by Dawn Dexter and Michael Winstanley.  相似文献   

19.
Underlying most research on biofeedback learning is a theoretical model of the processes involved. The current study tested a prediction from the Awareness Model: High initial EMG awareness should facilitate response control during EMG biofeedback training. Seventy-two undergraduates were assessed for forehead EMG awareness by asking them to produce target responses from 1.0 to 5.0 µV every 15 s for 16 trials. Based on this assessment, two groups (high and low awareness) were trained for 64 trials to produce these target levels with either EMG biofeedback, practice (no feedback), or noncontingent EMG feedback. A transfer task was identical to the initial assessment. During training, the biofeedback group deviated less from target than the practice and noncontingent groups. The biofeedback group was the only group to improve from initial EMG awareness activity. During transfer, only the low awareness biofeedback group remained below initial EMG awareness level. These findings can be interpreted in terms of the Two-Process Model.  相似文献   

20.
Eighteen children with ADD/ADHD, some of whom were also LD, ranging in ages from 5 through 15 were randomly assigned to one of two conditions. The experimental condition consisted of 40 45-minute sessions of training in enhancing beta activity and suppressing theta activity, spaced over 6 months. The control condition, waiting list group, received no EEG biofeedback. No other psychological treatment or medication was administered to any subjects. All subjects were measured at pretreatment and at posttreatment on an IQ test and parent behavior rating scales for inattention, hyperactivity, and aggressive/defiant (oppositional) behaviors. At posttreatment the experimental group demonstrated a significant increase (mean of 9 points) on the K-Bit IQ Composite as compared to the control group (p<.05). The experimental group also significantly reduced inattentive behaviors as rated by parents (p<.05). The significant improvements in intellectual functioning and attentive behaviors might be explained as a result of the attentional enhancement affected by EEG biofeedback training. Further research utilizing improved data collection and analysis, more stringent control groups, and larger sample sizes are needed to support and replicate these findings.This research was supported by an equipment grant by Autogenics Systems. Portions of this paper were presented at the annual convention of the Association of Applied Psychophysiology and Biofeedback, March, 1993 in Los Angeles and at the annual meeting of the Biofeedback Society of California, November, 1992 in Monterey, California. The authors gratefully acknowledge Todd Fischer and Paul Clopton for their valuable assistance in statistical analysis for this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号