首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was made of the interaction of 8-oxoguanine-DNA glycosylases of Escherichia coli (Fpg) and human (OGG1), as well as apurinic/apyrimidinic endonucleases of yeast (Apn1) and E. coli (Nfo), with oligodeoxyribonucleotides containing 8-oxoguaine (oxoG) and tetrahydrofuran (F, a stable analog of an apurinic site) separated by various numbers of nucleotides. Inhibitor analysis showed that the affinity of Fgp for single-stranded DNA ligands is virtually independent of the relative positions of oxoG and F. K M and k cat were determined for all the four enzymes and all double-stranded substrates studied. The effect of the second lesion strongly depended both on the relative position of the lesion and the enzyme of interest. The highest drop in the affinity of Fpg and OGG1 for the substrate (1.6-to 148-fold) and in the reaction rate (4.8-to 58-fold) was recorded for the oligonucleotides in which F was immediately 3′ or 5′ of oxoG. Introduction of the second lesion barely affected K M for nucleases Apn1 and Nfo. The reaction rate was five-to tenfold lower for the substrates containing two adjacent lesions. For all enzymes studied, an increase in the distance between two lesions in double-stranded DNA decreased their contribution to K M and k cat.  相似文献   

2.
In addition to double- and single-strand DNA breaks and isolated base modifications, ionizing radiation induces clustered DNA damage, which contains two or more lesions closely spaced within about two helical turns on opposite DNA strands. Post-irradiation repair of single-base lesions is routinely performed by base excision repair and a DNA strand break is involved as an intermediate. Simultaneous processing of lesions on opposite DNA strands may generate double-strand DNA breaks and enhance nonhomologous end joining, which frequently results in the formation of deletions. Recent studies support the possibility that the mechanism of base excision repair contributes to genome stability by diminishing the formation of double-strand DNA breaks during processing of clustered lesions.  相似文献   

3.
Clustered lesions are defined as two lesions within 20 bps and are generated in DNA by ionizing radiation. In vitro studies and work in bacteria have shown that attempted repair of two closely opposed lesions can result in the formation of double strand breaks (DSBs). Since mammalian cells can repair DSBs by non-homologous end-joining (NHEJ), we hypothesized that NHEJ would repair DSBs formed during the removal of clustered tetrahydrofurans (furans). However, two opposing furans situated 2, 5 or 12 bps apart in a firefly luciferase reporter plasmid caused a decrease in luciferase activity in wild-type, Ku80 or DNA-PKcs-deficient cells, indicating the generation of DSBs. Loss of luciferase activity was maximal at 5 bps apart and studies using siRNA implicate the major AP endonuclease in the initial cleavage. Since NHEJ-deficient cells had equivalent luciferase activity to their isogenic wild-type cells, NHEJ was not involved in accurate repair of clustered lesions. However, quantitation and examination of re-isolated DNA showed that damage-containing plasmids were inaccurately repaired by Ku80-dependent, as well as Ku80-independent mechanisms. This work indicates that not even NHEJ can completely prevent the conversion of clustered lesions to potentially lethal DSBs, so demonstrating the biological relevance of ionizing radiation-induced clustered damage.  相似文献   

4.
Summary This report summarizes data on the induction, repair and biological relevance of five types of radiation-induced DNA lesions for which repair kinetic studies have been performed in eukaryotic cells by various laboratories. These lesions are: DNA-protein crosslinks, base damage, single-strand breaks, double-strand breaks and bulky lesions (clustered base damage in the nm-range). The influence of various factors, such as oxia/anoxia, linear energy transfer of the radiation used, incubation medium, cell cycle stage, thiol content, hyperthermia, on the induction and repair of these lesions is described. Radiation-sensitive cell lines are also included.Paper given at the workshop Molecular Radiation Biology. German Section of the DNA Repair Network, München-Neuherberg, 21.–23.3.90  相似文献   

5.
Clustered DNA damage, where two or more lesions are located proximally to each other, is frequently induced by ionizing radiation. Individual base lesions within a cluster are repaired by base excision repair. In this study we addressed the question of how thymine glycol (Tg) within a cluster would affect the repair of opposing lesions by human cell extracts. We have found that Tg located opposite to an abasic site does not affect cleavage of this site by apurinic/apyrimidinic (AP) endonuclease. However, Tg significantly compromised the next step of the repair. Although purified DNA polymerase beta was able to incorporate the correct nucleotide (dAMP) opposite to Tg, the rate of incorporation was reduced by 3-fold. Tg does not affect 5'-sugar phosphate removal by the 2-deoxyribose-5-phosphate (dRP) lyase activity of DNA polymerase beta, but further processing of the strand break by purified DNA ligase III was slightly diminished. In agreement with these findings, although an AP site located opposite to Tg was efficiently incised in human cell extract, only a limited amount of fully repaired product was observed, suggesting that such clustered DNA lesions may have a significantly increased lifetime in human cells compared with similar single-standing lesions.  相似文献   

6.
Oxidatively-induced clustered DNA lesions are considered the signature of any ionizing radiation like the ones human beings are exposed daily from various environmental sources (medical X-rays, radon, etc.). To evaluate the role of BRCA1 deficiencies in the mitigation of radiation-induced toxicity and chromosomal instability we have used two human breast cancer cell lines, the BRCA1 deficient HCC1937 cells and as a control the BRCA1 wild-type MCF-7 cells. As an additional control for the DNA damage repair measurements, the HCC1937 cells with partially reconstituted BRCA1 expression were used. Since clustered DNA damage is considered the signature of ionizing radiation, we have measured the repair of double strand breaks (DSBs), non-DSB bistranded oxidative clustered DNA lesions (OCDLs) as well as single strand breaks (SSBs) in cells exposed to radiotherapy-relevant γ-ray doses. Parallel measurements were performed in the accumulation of chromatid and isochromatid breaks. For the measurement of OCDL repair, we have used a novel adaptation of the denaturing single cell gel electrophoresis (Comet assay) and pulsed field gel electrophoresis with Escherichia coli repair enzymes as DNA damage probes. Independent monitoring of the γ-H2AX foci was also performed while metaphase chromatid lesions were measured as an indicator of chromosomal instability. HCC1937 cells showed a significant accumulation of all types of DNA damage and chromatid breaks compared to MCF-7 while BRCA1 partial expression contributed significantly in the overall repair of OCDLs. These results further support the biological significance of repair resistant clustered DNA damage leading to chromosomal instability. The current results combined with previous findings on the minimized ability of base clusters to induce cell death (mainly induced by DSBs), enhance the potential association of OCDLs with breast cancer development especially in the case of a BRCA1 deficiency leading to the survival of breast cells carrying a high load of unrepaired DNA damage clusters.  相似文献   

7.
Two or more base damages, abasic sites or single-strand breaks (SSBs) within two helical turns of the DNA form a multiply damaged site (MDS) or clustered lesion. Studies in vitro and in bacteria indicate that attempts to repair two closely opposed base lesions can potentially form a lethal double-strand break (DSB). Ionizing radiation and chemotherapeutic agents introduce complex lesions, and the inability of a cell to repair MDSs is believed to contribute to the lethality of these treatments. The goal of this work was to extend the in vitro studies by examining MDS repair in mammalian cells under physiological conditions. Here, two opposing uracil residues separated by 3, 5, 7, 13 or 29 base-pairs were chosen as model DNA lesions. Double-stranded oligonucleotides containing no damage, a single uracil residue or the MDS were introduced into a non-replicating mammalian construct within the firefly luciferase open reading frame, or at the 5' or 3' end of the luciferase expression cassette. Following transient transfection into HeLa cells, luciferase activity was measured or plasmid DNA was re-isolated from the cells. Formation of a DSB was expected to decrease luciferase expression. However, certain single uracil residues as well as the MDSs decreased luciferase activity, which suggested that the reduction in activity was not due to DSB formation. In fact, Southern analysis of the re-isolated plasmid did not show the presence of linear DNA and demonstrated that none of the constructs was destroyed during repair. Further analysis of the re-isolated DNA demonstrated that only a small percentage of molecules originally carrying a single lesion or an MDS contained deletions. This work indicates that the majority of the clustered lesions were not converted to DSBs and that repair systems in mammalian cells may have established mechanisms to avoid the accumulation of SSB-repair intermediates.  相似文献   

8.
Ionizing radiation induces clustered DNA damage where two or more lesions are located proximal to each other on the same or opposite DNA strands. It has been suggested that individual lesions within a cluster are removed sequentially and that the presence of a vicinal lesion(s) may affect the rate and fidelity of DNA repair. In this study, we addressed the question of how 8-oxoguanine located opposite to normal or reduced abasic sites would affect the repair of these sites by the base excision repair system. We have found that an 8-oxoguanine located opposite to an abasic site does not affect either the efficiency or fidelity of repair synthesis by DNA polymerase beta. In contrast, an 8-oxoguanine located one nucleotide 3'-downstream of the abasic site significantly reduces both strand displacement synthesis supported by DNA polymerase beta or delta and cleavage by flap endonuclease of the generated flap, thus inhibiting the long-patch base excision repair pathway.  相似文献   

9.
Base excision repair (BER) is the major pathway for the repair of simple, non-bulky lesions in DNA that is initiated by a damage-specific DNA glycosylase. Several human DNA glycosylases exist that efficiently excise numerous types of lesions, although the close proximity of a single strand break (SSB) to a DNA adduct can have a profound effect on both BER and SSB repair. We recently reported that DNA lesions located as a second nucleotide 5′-upstream to a DNA SSB are resistant to DNA glycosylase activity and this study further examines the processing of these ‘complex’ lesions. We first demonstrated that the damaged base should be excised before SSB repair can occur, since it impaired processing of the SSB by the BER enzymes, DNA ligase IIIα and DNA polymerase β. Using human whole cell extracts, we next isolated the major activity against DNA lesions located as a second nucleotide 5′-upstream to a DNA SSB and identified it as DNA polymerase δ (Pol δ). Using recombinant protein we confirmed that the 3′-5′-exonuclease activity of Pol δ can efficiently remove these DNA lesions. Furthermore, we demonstrated that mouse embryonic fibroblasts, deficient in the exonuclease activity of Pol δ are partially deficient in the repair of these ‘complex’ lesions, demonstrating the importance of Pol δ during the repair of DNA lesions in close proximity to a DNA SSB, typical of those induced by ionizing radiation.  相似文献   

10.
Circular dichroism (CD) and fluorescence spectra have been measured for complexes formed between four-stranded G4-DNA and ethidium bromide (EB). The EB-G4-DNA complexes showed similar induced CD spectra, compared with the induced CD spectrum of the EB-calf thymus DNA complex.  相似文献   

11.
Humans are daily exposed to background radiation and various sources of oxidative stress. My research has focused in the last 12 years on the effects of ionizing radiation on DNA, which is considered as the key target of radiation in the cell. Ionizing radiation and endogenous cellular oxidative stress can also induce closely spaced oxidatively induced DNA lesions called "clusters" of DNA damage or locally multiply damage sites, as first introduced by John Ward. I am now interested in the repair mechanisms of clustered DNA damage, which is considered as the most difficult for the cell to repair. A main part of my research is devoted to evaluating the role of clustered DNA damage in the promotion of carcinogenesis in vitro and in vivo . Currently in my laboratory, there are two main ongoing projects. (1) Study of the role of BRCA1 and DNA-dependent protein kinase catalytic subunit repair proteins in the processing of clustered DNA damage in human cancer cells. For this project, we use several tumor cell lines, such as breast cancer cell lines MCF-7 and HCC1937 (BRCA1 deficient) and human glioblastoma cells MO59J/K; and (2) Possible use of DNA damage clusters as novel cancer biomarkers for prognostic and therapeutic applications related to modulation of oxidative stress. In this project human tumor and mice tissues are being used.  相似文献   

12.
We are investigating the mechanisms for producing or avoiding errors during DNA synthesis catalyzed by DNA replication and repair proteins purified from eukaryotic sources. Using assays that monitor the fidelity of a single round of DNA synthesis in vitro, we have defined the error frequency and mutational specificity of the four classes of animal cell DNA polymerases (alpha, beta, delta, gamma), and the fidelity of an SV40 origin-dependent DNA replication complex in extracts of HeLa cells.  相似文献   

13.
14.
J S Vyle  B A Connolly  D Kemp  R Cosstick 《Biochemistry》1992,31(11):3012-3018
Oligonucleotides containing a 3'-thiothymidine residue (T3's) at the cleavage site for the EcoRV restriction endonuclease (between the central T and A residues of the sequence GATATC) have been prepared on an automated DNA synthesizer using 5'-O-monomethoxytritylthymidine 3'-S-(2-cyanoethyl N,N-diisopropylphosphorothioamidite). The self-complementary sequence GACGAT3'sATCGTC was completely resistant to cleavage by EcoRV, while the heteroduplex composed of 5'-TCTGAT3'sATCCTC and 5'-GAGGATATCAGA (duplex 4) was cleaved only in the unmodified strand (5'-GAGGATATCAGA). In contrast, strands containing a 3'-S-phosphorothiolate linkage could be chemically cleaved specifically at this site with Ag+. A T3's residue has also been incorporated in the (-) strand of double-stranded closed circular (RF IV) M13mp18 DNA at the cleavage site of a unique EcoRV recognition sequence by using 5'-pCGAGCTCGAT3'sATCGTAAT as a primer for polymerization on the template (+) strand of M13mp18 DNA. On treatment of this substrate with EcoRV, only one strand was cleaved to produce the RF II or nicked DNA. Taken in conjunction with the cleavage studies on the oligonucleotides, this result demonstrates that the 3'-S-phosphorothiolate linkage is resistant to scission by EcoRV. Additionally, the phosphorothiolate-containing strand of the M13mp18 DNA could be cleaved specifically at the point of modification using iodine in aqueous pyridine. The combination of enzymatic and chemical techniques provides, for the first time, a demonstrated method for the sequence-specific cleavage of either the (+) or (-) strand.  相似文献   

15.
DNA damage by peroxynitrite characterized with DNA repair enzymes.   总被引:9,自引:0,他引:9       下载免费PDF全文
The DNA damage induced by peroxynitrite in isolated bacteriophage PM2 DNA was characterized by means of several repair enzymes with defined substrate specificities. Similar results were obtained with peroxynitrite itself and with 3-morpholinosydnonimine (SIN-1), a compound generating the precursors of peroxynitrite, nitric oxide and superoxide. A high number of base modifications sensitive to Fpg protein which, according to HPLC analysis, were mostly 8-hydroxyguanine residues, and half as many single-strand breaks were observed, while the numbers of oxidized pyrimidines (sensitive to endonuclease III) and of sites of base loss (sensitive to exonuclease III or T4 endonuclease V) were relatively low. This DNA damage profile caused by peroxynitrite is significantly different from that obtained with hydroxyl radicals or with singlet molecular oxygen. The effects of various radical scavengers and other additives (t-butanol, selenomethionine, selenocystine, desferrioxamine) were the same for single-strand breaks and Fpg-sensitive modifications and indicate that a single reactive intermediate but not peroxynitrite itself is responsible for the damage.  相似文献   

16.
Triple helices represent an attractive method for modulating specific gene expression. In particular, cross-linking between a triplex-forming oligonucleotide (TFO) and its duplex DNA target, typically through the formation of psoralen photoadducts, allows efficient blocking of elongation by RNA polymerases in vitro. However, in vivo, this approach is limited by DNA repair of the photoadduct. Here we describe the use of an oligodeoxyribonucleotide 19mer psoralen-modified TFO to form covalent linkages between an oligonucleotide and both strands of the targeted duplex DNA, thereby efficiently blocking expression of a luciferase reporter gene. Most importantly, we demonstrate that both the psoralen cross-link and the purine-motif triplex remained intact for at least 72 h post-transfection, indicating that such species can persist for an extended period of time in vivo. These findings support the feasibility of an antigene approach for the therapeutic regulation of specific gene expression.  相似文献   

17.
Interactions of viruses with the cellular DNA repair machinery   总被引:6,自引:0,他引:6  
Mammalian cells are equipped with complex machinery to monitor and repair damaged DNA. In addition to responding to breaks in cellular DNA, recent studies have revealed that the DNA repair machinery also recognizes viral genetic material. We review some examples that highlight the different strategies that viruses have developed to interact with the host DNA repair apparatus. While adenovirus (Ad) inactivates the host machinery to prevent signaling and concatemerization of the viral genome, other viruses may utilize DNA repair to their own advantage. Viral interactions with the repair machinery can also have detrimental consequences for the host cells and their ability to maintain the integrity of the host genome. Exploring the interactions between viruses and the host DNA repair machinery has revealed novel host responses to virus infections and has provided new tools to study the DNA damage response.  相似文献   

18.
DNA修复酶是一类能保护生物体免受各种DNA损伤的毒性效应和保证遗传信息完整性的重要酶蛋白。近年来对DNA修复酶晶体结构的研究揭示了一些结构基序参与了酶蛋白与特定DNA损伤的识别过程,这些研究结果促进了对修复特定DNA损伤的作用机理和结构基础的认识和了解。本文综述了这方面的研究进展。  相似文献   

19.
Hombauer H  Campbell CS  Smith CE  Desai A  Kolodner RD 《Cell》2011,147(5):1040-1053
DNA mismatch repair (MMR) increases replication fidelity by eliminating mispaired bases resulting from replication errors. In Saccharomyces cerevisiae, mispairs are primarily detected by the Msh2-Msh6 complex and corrected following recruitment of the Mlh1-Pms1 complex. Here, we visualized functional fluorescent versions of Msh2-Msh6 and Mlh1-Pms1 in living cells. We found that the Msh2-Msh6 complex is an S phase component of replication centers independent of mispaired bases; this localized pool accounted for 10%-15% of MMR in wild-type cells but was essential for MMR in the absence of Exo1. Unexpectedly, Mlh1-Pms1 formed nuclear foci that, although dependent on Msh2-Msh6 for formation, rarely colocalized with Msh2-Msh6 replication-associated foci. Mlh1-Pms1 foci increased when the number of mispaired bases was increased; in contrast, Msh2-Msh6 foci were unaffected. These findings suggest the presence of replication machinery-coupled and -independent pathways for mispair recognition by Msh2-Msh6, which direct formation of superstoichiometric Mlh1-Pms1 foci that represent sites of active MMR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号